Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fuzzy association rule mining from spatio-temporal data
Date
2008-07-03
Author
Calargun, Seda Unal
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
The use of fuzzy sets in mining association rules from spatio-temporal databases is useful since fuzzy sets are able to model the uncertainty embedded in the meaning of data. There are several fuzzy association rule mining techniques that can work on spatio-temporal data. Their ability to mine fuzzy association rules has to be compared on a realistic scenario. Besides the performance criteria, other criteria that can express the quality of an association rule discovered shall be specified. In this paper, fuzzy association rule mining is performed with spatio-temporal data cubes and Apriori algorithm. A real life application is developed to compare data cubes and Apriori algorithm according to the following criteria: interpretability, precision, utility, novelty, direct-to-the-point, performance and visualization, which are defined within the scope of this paper.
Subject Keywords
Data mining
,
Fuzzy association rules
,
Fuzzy spatio-temporal data cube
,
Association rule mining
,
Association rule mining comparison criteria
URI
https://hdl.handle.net/11511/46769
DOI
https://doi.org/10.1007/978-3-540-69839-5_47
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Confidence-based concept discovery in multi-relational data mining
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (2008-03-21)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, a new ILP-based concept dis...
Confidence-based concept discovery in relational databases
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (2009-11-16)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we improve an ILP-based con...
Improving the scalability of ILP-based multi-relational concept discovery system through parallelization
Mutlu, Ayşe Ceyda; Karagöz, Pınar; Kavurucu, Yusuf (2012-03-01)
Due to the increase in the amount of relational data that is being collected and the limitations of propositional problem definition in relational domains, multi-relational data mining has arisen to be able to extract patterns from relational data. In order to cope with intractably large search space and still to be able to generate high-quality patterns. ILP-based multi-relational data mining and concept discovery systems employ several search strategies and pattern limitations. Another direction to cope w...
Aggregation in confidence-based concept discovery for multi-relational data mining
Kavurucu, Yusuf; Senkul, Pinar; Toroslu, İsmail Hakkı (null; 2008-12-01)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we describe a method for ge...
Normalization and lossless join decomposition of similarity-based fuzzy relational databases
Bahar, O; Yazıcı, Adnan (Wiley, 2004-10-01)
Fuzzy relational database models generalize the classical relational database model by allowing uncertain and imprecise information to be represented and manipulated. In this article, we introduce fuzzy extensions of the normal forms for the similarity-based fuzzy relational database model. Within this framework of fuzzy data representation, similarity, conformance of tuples, the concept of fuzzy functional dependencies, and partial fuzzy functional dependencies are utilized to define the fuzzy key notion, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. U. Calargun and A. Yazıcı, “Fuzzy association rule mining from spatio-temporal data,” 2008, vol. 5072, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46769.