Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Fuzzy association rule mining from spatio-temporal data
Date
2008-07-03
Author
Calargun, Seda Unal
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
The use of fuzzy sets in mining association rules from spatio-temporal databases is useful since fuzzy sets are able to model the uncertainty embedded in the meaning of data. There are several fuzzy association rule mining techniques that can work on spatio-temporal data. Their ability to mine fuzzy association rules has to be compared on a realistic scenario. Besides the performance criteria, other criteria that can express the quality of an association rule discovered shall be specified. In this paper, fuzzy association rule mining is performed with spatio-temporal data cubes and Apriori algorithm. A real life application is developed to compare data cubes and Apriori algorithm according to the following criteria: interpretability, precision, utility, novelty, direct-to-the-point, performance and visualization, which are defined within the scope of this paper.
Subject Keywords
Data mining
,
Fuzzy association rules
,
Fuzzy spatio-temporal data cube
,
Association rule mining
,
Association rule mining comparison criteria
URI
https://hdl.handle.net/11511/46769
DOI
https://doi.org/10.1007/978-3-540-69839-5_47
Collections
Department of Computer Engineering, Conference / Seminar