Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Normalization and lossless join decomposition of similarity-based fuzzy relational databases
Date
2004-10-01
Author
Bahar, O
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
262
views
0
downloads
Cite This
Fuzzy relational database models generalize the classical relational database model by allowing uncertain and imprecise information to be represented and manipulated. In this article, we introduce fuzzy extensions of the normal forms for the similarity-based fuzzy relational database model. Within this framework of fuzzy data representation, similarity, conformance of tuples, the concept of fuzzy functional dependencies, and partial fuzzy functional dependencies are utilized to define the fuzzy key notion, transitive closures, and the fuzzy normal forms. Algorithms for dependency preserving and lossless join decompositions of fuzzy relations are also given. We include examples to show how normalization, dependency preserving, and lossless join decomposition based on the fuzzy functional dependencies of fuzzy relation are done and applied to some real-life applications. (C) 2004 Wiley Periodicals, Inc.
Subject Keywords
Theoretical Computer Science
,
Human-Computer Interaction
,
Software
,
Artificial Intelligence
URI
https://hdl.handle.net/11511/62697
Journal
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
DOI
https://doi.org/10.1002/int.20029
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
An access structure for similarity-based fuzzy databases
Yazıcı, Adnan (Elsevier BV, 1999-04-01)
A significant effort has been made in representing imprecise information in database models by using fuzzy set theory. However, the research directed toward access structures to handle fuzzy querying effectively is still at an immature stage. Fuzzy querying involves more complex processing than the ordinary querying does. Additionally, a larger number of tuples are possibly selected by fuzzy conditions in comparison to the crisp ones. It is obvious that the need for fast response time becomes very important...
ILP-based concept discovery in multi-relational data mining
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (Elsevier BV, 2009-11-01)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, an ILP-based concept discov...
Bayesian learning under nonnormality
Yılmaz, Yıldız Elif; Alpaslan, Ferda Nur; Department of Computer Engineering (2004)
Naive Bayes classifier and maximum likelihood hypotheses in Bayesian learning are considered when the errors have non-normal distribution. For location and scale parameters, efficient and robust estimators that are obtained by using the modified maximum likelihood estimation (MML) technique are used. In naive Bayes classifier, the error distributions from class to class and from feature to feature are assumed to be non-identical and Generalized Secant Hyperbolic (GSH) and Generalized Logistic (GL) distribut...
Fuzzy querying im XML databases
Üstünkaya, Ekin; Yazıcı, Adnan; Department of Computer Engineering (2004)
Real-world information containing subjective opinions and judgments has emerged the need to represent complex and imprecise data in databases. Additionally, the challenge of transferring information between databases whose data storage methods are not compatible has been an important research topic. Extensible Markup Language (XML) has the potential to meet these challenges since it has the ability to represent complex and imprecise data. In this thesis, an XML based fuzzy data representation and querying s...
An approach to the mean shift outlier model by Tikhonov regularization and conic programming
TAYLAN, PAKİZE; Yerlikaya-Oezkurt, Fatma; Weber, Gerhard Wilhelm (IOS Press, 2014-01-01)
In statistical research, regression models based on data play a central role; one of these models is the linear regression model. However, this model may give misleading results when data contain outliers. The outliers in linear regression can be resolved in two stages: by using the Mean Shift Outlier Model (MSOM) and by providing a new solution for this model. First, we construct a Tikhonov regularization problem for the MSOM. Then, we treat this problem using convex optimization techniques, specifically c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Bahar and A. Yazıcı, “Normalization and lossless join decomposition of similarity-based fuzzy relational databases,”
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
, pp. 885–917, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62697.