Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Second-order experimental designs for simulation metamodeling
Date
2002-12-01
Author
Batmaz, İnci
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
The main purpose of this study is to compare the performance of a group of second-order designs such as Box-Behnken, face-center cube, three-level factorial, central composite, minimum bias, and minimum variance plus bias for estimating a quadratic metamodel. A time-shared computer system is used to demonstrate the ability of the designs in providing good fit of the metamodel to the simulation response. First, for various numbers of center runs, these designs are compared with respect to their efficiency, rotatability, orthogonality, robustness, bias, and prediction variance. Next, second-order metamodels are fit to the data collected using these designs. Metamodel fit is investigated using criteria such as average absolute error, PRESS, and the C-p statistic. Results indicate that the minimum variance plus bias design is the most promising design to estimate a metamodel for the case studied.
Subject Keywords
Modelling and Simulation
,
Software
,
Computer Graphics and Computer-Aided Design
URI
https://hdl.handle.net/11511/46807
Journal
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL
DOI
https://doi.org/10.1177/0037549702078012001
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Discretization of Parametrizable Signal Manifolds
Vural, Elif (Institute of Electrical and Electronics Engineers (IEEE), 2011-12-01)
Transformation-invariant analysis of signals often requires the computation of the distance from a test pattern to a transformation manifold. In particular, the estimation of the distances between a transformed query signal and several transformation manifolds representing different classes provides essential information for the classification of the signal. In many applications, the computation of the exact distance to the manifold is costly, whereas an efficient practical solution is the approximation of ...
Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing
Gundogdu, Erhan; Özkan, Huseyin; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2017-11-01)
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel t...
Monte Carlo analysis of ridged waveguides with transformation media
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2013-07-01)
A computational model is presented for Monte Carlo simulation of waveguides with ridges, by combining the principles of transformation electromagnetics and the finite methods (such as finite element or finite difference methods). The principle idea is to place a transformation medium around the ridge structure, so that a single and easy-to-generate mesh can be used for each realization of the Monte Carlo simulation. Hence, this approach leads to less computational resources. The technique is validated by me...
Nonlinear dynamic modeling of gear-shaft-disk-bearing systems using finite elements and describing functions
Maliha, R; Dogruer, CU; Özgüven, Hasan Nevzat (ASME International, 2004-05-01)
This study presents a new nonlinear dynamic model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur gear pair is coupled with linear finite element models of shafts carrying them, and with discrete models of bearings and disks. The nonlinear elasticity term resulting from backlash is expressed by a describing function, and a method developed in previous studies to determine multi harmonic responses of nonlinear multi-degree-of-freedom systems is employed for the solution. The excitat...
Rate-Distortion Efficient Piecewise Planar 3-D Scene Representation From 2-D Images
Imre, Evren; Alatan, Abdullah Aydın; Gueduekbay, Ugur (Institute of Electrical and Electronics Engineers (IEEE), 2009-03-01)
In any practical application of the 2-D-to-3-D conversion that involves storage and transmission, representation efficiency has an undisputable importance that is not reflected in the attention the topic received. In order to address this problem, a novel algorithm, which yields efficient 3-D representations in the rate distortion sense, is proposed. The algorithm utilizes two views of a scene to build a mesh-based representation incrementally, via adding new vertices, while minimizing a distortion measure....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Batmaz, “Second-order experimental designs for simulation metamodeling,”
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL
, pp. 699–715, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46807.