Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Finite Volume Method for the Relativistic Burgers Equation on a FLRW Background Spacetime
Download
index.pdf
Date
2018-02-01
Author
Ceylan, Tuba
Lefloch, Philippe G.
Okutmuştur, Baver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
12
views
8
downloads
A relativistic generalization of the inviscid Burgers equation was introduced by LeFloch and co-authors and was recently investigated numerically on a Schwarzschild background. We extend this analysis to a Friedmann-Lemaitre-Robertson-Walker (FLRW) background, which is more challenging due to the existence of time-dependent, spatially homogeneous solutions. We present a derivation of the model of interest and we study its basic properties, including the class of spatially homogeneous solutions. Then, we design a second-order accurate scheme based on the finite volume methodology, which provides us with a tool for investigating the properties of solutions. Computational experiments demonstrate the efficiency of the proposed scheme for numerically capturing weak solutions.
Subject Keywords
Physics and Astronomy (miscellaneous)
URI
https://hdl.handle.net/11511/46906
Journal
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
DOI
https://doi.org/10.4208/cicp.020415.260717a
Collections
Department of Mathematics, Article