Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A "Suggested" Picture of Web Search in Turkish
Download
index.pdf
Date
2016-06-01
Author
SARİGİL, erdem
YILMAZ, oğuz
Altıngövde, İsmail Sengör
ÖZCAN, RIFAT
ULUSOY, ÖZGÜR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
Although query log analysis provides crucial insights about Web users' search interests, conducting such analyses is almost impossible for some languages, as large-scale and public query logs are quite scarce. In this study, we first survey the existing query collections in Turkish and discuss their limitations. Next, we adopt a novel strategy to obtain a set of Turkish queries using the query autocompletion services from the four major search engines and provide the first large-scale analysis of Web queries and their results in Turkish.
Subject Keywords
General Computer Science
URI
https://hdl.handle.net/11511/46923
Journal
ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING
DOI
https://doi.org/10.1145/2891105
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
A Content-Boosted Collaborative Filtering Approach for Movie Recommendation Based on Local and Global Similarity and Missing Data Prediction
Özbal, Gozde; Karaman, Hilal; Alpaslan, Ferda Nur (Oxford University Press (OUP), 2011-09-01)
Most traditional recommender systems lack accuracy in the case where data used in the recommendation process is sparse. This study addresses the sparsity problem and aims to get rid of it by means of a content-boosted collaborative filtering approach applied to a web-based movie recommendation system. The main motivation is to investigate whether further success can be obtained by combining 'local and global user similarity' and 'effective missing data prediction' approaches, which were previously introduce...
ILP-based concept discovery in multi-relational data mining
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (Elsevier BV, 2009-11-01)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, an ILP-based concept discov...
On-demand conversation customization for services in large smart environments
Elgedawy, I. (IBM, 2011-01-01)
Services in large smart environments, as defined in this paper, are "aware" of their users' contexts and goals and are able to automatically interact with one another in order to achieve these goals. Unfortunately, interactions between services (i.e., service conversations) are not necessarily compatible, as services could have different interfaces (i.e., signature incompatibilities), as well as different logic for message ordering (i.e., protocol incompatibilities). Such conversation incompatibilities crea...
Using social graphs in one-class collaborative filtering problem
Kaya, Hamza; Alpaslan, Ferda Nur; Department of Computer Engineering (2009)
One-class collaborative filtering is a special type of collaborative filtering methods that aims to deal with datasets that lack counter-examples. In this work, we introduced social networks as a new data source to the one-class collaborative filtering (OCCF) methods and sought ways to benefit from them when dealing with OCCF problems. We divided our research into two parts. In the first part, we proposed different weighting schemes based on social graphs for some well known OCCF algorithms. One of the weig...
Parallel Scalable PDE Constrained Optimization Antenna Identification in Hyperthermia Cancer Treatment Planning
SCHENK, Olaf; Manguoğlu, Murat; CHRİSTEN, Matthias; SATHE, Madan (Springer Science and Business Media LLC, 2009-01-01)
We present a PDE-constrained optimization algorithm which is designed for parallel scalability on distributed-memory architectures with thousands of cores. The method is based on a line-search interior-point algorithm for large-scale continuous optimization, it is matrix-free in that it does not require the factorization of derivative matrices. Instead, it uses a new parallel and robust iterative linear solver on distributed-memory architectures. We will show almost linear parallel scalability results for t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
e. SARİGİL, o. YILMAZ, İ. S. Altıngövde, R. ÖZCAN, and Ö. ULUSOY, “A “Suggested” Picture of Web Search in Turkish,”
ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46923.