Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Accurate numerical bounds for the spectral points of singular Sturm-Liouville problems over -infinity < x <infinity
Date
2000-03-01
Author
Taşeli, Hasan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The eigenvalues of singular Sturm-Liouville problems are calculated very accurately by obtaining rigorous upper and lower bounds. The singular problem over the unbounded domain (-infinity,infinity) is considered as the limiting case of an associated problem on the finite interval [-l,l]. It is then proved that the eigenvalues of the resulting regular systems satisfying Dirichlet and Neumann boundary conditions provide, respectively, upper and lower bounds converging monotonically to the required asymptotic eigenvalues. Numerical results for several quantum mechanical potentials illustrate that the eigenvalues can be calculated to an arbitrary accuracy, whenever the boundary parameter l is in the neighborhood of some critical value, denoted by l(cr).
Subject Keywords
Sturm-Liouville problem
,
Schrodinger equation
,
Eigenvalue bound
,
Eigenvalue calculation
,
Eigenfunction expansion
URI
https://hdl.handle.net/11511/46988
Journal
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
DOI
https://doi.org/10.1016/s0377-0427(99)00302-7
Collections
Department of Mathematics, Article