Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Quantum mechanical computation of billiard systems with arbitrary shapes
Download
index.pdf
Date
2003
Author
Erhan, İnci
Metadata
Show full item record
Item Usage Stats
201
views
0
downloads
Cite This
An expansion method for the stationary Schrodinger equation of a particle moving freely in an arbitrary axisymmeric three dimensional region defined by an analytic function is introduced. The region is transformed into the unit ball by means of coordinate substitution. As a result the Schrodinger equation is considerably changed. The wavefunction is expanded into a series of spherical harmonics, thus, reducing the transformed partial differential equation to an infinite system of coupled ordinary differential equations. A Fourier-Bessel expansion of the solution vector in terms of Bessel functions with real orders is employed, resulting in a generalized matrix eigenvalue problem. The method is applied to two particular examples. The first example is a prolate spheroidal billiard which is also treated by using an alternative method. The numerical results obtained by using both the methods are compared. The second exampleis a billiard family depending on a parameter. Numerical results concerning the second example include the statistical analysis of the eigenvalu
Subject Keywords
Schrödinger equation
,
Eigenfunction expansions
,
Eigenvalues
URI
http://etd.lib.metu.edu.tr/upload/2/1104082/index.pdf
https://hdl.handle.net/11511/13737
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Improved analytical approximation to arbitrary l-state solutions of the Schrodinger equation for the hyperbolical potential
IKHDAİR, SAMEER; Sever, Ramazan (2009-04-01)
A new approximation scheme to the centrifugal term is proposed to obtain the l not equal 0 bound-state solutions of the Schrodinger equation for an exponential-type potential in the framework of the hypergeometric method. The corresponding normalized wave functions are also found in terms of the Jacobi polynomials. To show the accuracy of the new proposed approximation scheme, we calculate the energy eigenvalues numerically for arbitrary quantum numbers n and l with two different values of the potential par...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Erhan, “Quantum mechanical computation of billiard systems with arbitrary shapes,” Ph.D. - Doctoral Program, Middle East Technical University, 2003.