Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Combining Structural Analysis and Computer Vision Techniques for Automatic Speech Summarization
Date
2008-12-17
Author
Sert, Mustafa
Baykal, Buyurman
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Similar to verse and chorus sections that appear as repetitive structures in musical audio, key-concept (or topic) of some speech recordings (e.g., presentations, lectures, etc.) may also repeat itself over the time. Hence, accurate detection of these repetitions may be helpful to the success of automatic speech summarization. Based on this motivation, we consider the applicability of music structural analysis methods to speech summary generation. Our method transforms a 1 - D time-domain speech signal to a 2 - D image representation, namely (dis)similarity matrix and detects possible repetitions within the matrix by using proper computer vision techniques. In addition, the method does not transcribe speech signal into words, phrases, or sentences. Hence, it can be generalized as speech-to-speech summarization method, in which summarization results are presented by speech instead of text. Furthermore, the method does not need a prior knowledge about the language or grammar of speech signal. Experiments show that, our method can capture the main theme of speech signals compared to the ideal transcription sections defined by experts and computational analysis shows our proposed method has a good performance.
Subject Keywords
Speech analysis
,
Computer vision
,
Speech synthesis
,
Natural languages
,
Signal analysis
,
Audio recording
,
Synthesizers
,
Computational complexity
,
Time domain analysis
,
Image representation
URI
https://hdl.handle.net/11511/47151
DOI
https://doi.org/10.1109/ism.2008.90
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar