Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of Irregularly Shaped Patch Antennas by using the Multiport Network Model
Date
2008-07-11
Author
Sener, Goker
Alatan, Lale
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
289
views
0
downloads
Cite This
The multiport network model (MNM) is an analytical method that is used to analyze microstrip antennas. MNM is based on defining ports along the periphery of the patch and evaluating the impedance matrix corresponding to these ports by using the Greenpsilas function for the cavity under the patch. For regular rectangular, triangular and circular patches, analytical expressions for the Greenpsilas function are available. In the analysis of irregular patches, Greenpsilas functions cannot be calculated explicitly and segmentation and/or desegmentation techniques [2] are used in conjunction with the MNM method. The term ldquoirregularly-shaped patch antennardquo refers to a microstrip antenna whose patch geometry is designed in order to fulfill a specific antenna property such as compactness, wideband characteristics or multi-resonant operation [3]. In this paper, our main concern is to optimize the input impedance function for an irregularly-shaped microstrip antenna by utilizing the MNM together with the desegmentation method. The variation of the input impedance with respect to the antenna dimensions is studied to investigate the potential utilization of MNM as a building block for a design tool that will be developed to optimize the dimensions of irregularly-shaped patch antennas.
Subject Keywords
Feeds
,
Optimization
,
Patch antennas
,
Broadband antennas
,
Microstrip
,
Impedance
,
Microstrip antennas
URI
https://hdl.handle.net/11511/47206
DOI
https://doi.org/10.1109/aps.2008.4620010
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis and design of cylindrically conformal microstrip antennas
Taşoğlu, Ali Özgür; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2011)
Cylindrically conformal microstrip antennas are investigated. Two different structures, namely proximity coupled and E-shaped microstrip antennas are analyzed and information about the design parameters is obtained by means of parametric study. With these structures, cylindrical arrays, having omnidirectional radiation in the circumferential plane of the cylinder, are designed. Proximity coupled cylindrical arrays operate in the 2.3-2.4 GHz aeronautical telemetry band with approximately 4% bandwidth. On the...
Design of asymmetric coplanar strip folded dipole antennas /
Karaciğer, Kamil; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
This thesis includes the design, simulation, production and measurement of an asymmetric coplanar strip folded dipole antenna suitable to be used as an element in a linear array operating at S-band (2.7 GHz - 3.3 GHz). In this same manner, its usefulness as an array antenna is also explored in this thesis. This antenna element consists of a microstrip line feed, microstrip to coplanar stripline transition (BALUN) and asymmetric coplanar strip (ACPS) folded dipole. The planar folded dipole can be constructed...
Design of a Re-configurable dual frequency microstrip antenna with integrated RF MEMS switches
Onat, Sinon; Ünlü, Mehmet; Alatan, Lale; Demir, Şimşek; Akın, Tayfun (2005-07-08)
The complete design of a re-configurable dual frequency antenna structure, including its integrated RF MEMS switches and their actuation lines together with a CPW feed, is introduced. The number of switches used in the inset is decreased compared to the hybrid design we presented previously (Onat, S. et al., IEEE Int. Antennas and Propag. Symp., vol.2, p.1812-15, 2004). Instead of utilizing available RF MEMS switches, new switches suitable for this application are designed. Two different switch configuratio...
Design of a multi-layer beam-steering WLAN antenna
Yilmaz, Kardelen; Nesimoglu, Tayfun (2018-11-02)
This paper represents the design of a microstrip patch antenna which is reconfigurable by means of the effect of a pixel grid overlay that is placed at a certain distance from the antenna. hi addition to beam steering capability, this article will focus on several important parameters of the aforementioned antenna, such as, the directivity, the gain, radiation pattern and polarization. The antenna consists three main parts; a rectangular microstrip patch antenna that has the operating frequency at around 2....
Design of a dual polarized low profile antenna for microwave brain imaging
Üçel, Kaan; Alatan, Lale; Department of Electrical and Electronics Engineering (2022-5-9)
In this thesis, a low profile, low cost, wide band (0.9-2GHz) dual linearly polarized printed dipole antenna is designed to be used in microwave brain imaging systems. Dual polarization feature offers superior data acquisition through polarization diversity for better image quality. Starting from a simple printed dipole, antenna structure is modified step by step to meet these design requirements. Since a conductive surface in close vicinity of the antenna affects antenna performance, in order to obtain uni...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Sener, L. Alatan, and M. Kuzuoğlu, “Design of Irregularly Shaped Patch Antennas by using the Multiport Network Model,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47206.