Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Low-discrepancy sequences using duality and global function fields
Download
index.pdf
Date
2007-01-01
Author
Niederreiter, Harald
Özbudak, Ferruh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
82
downloads
Cite This
Subject Keywords
Algebra and Number Theory
URI
https://hdl.handle.net/11511/47278
Journal
ACTA ARITHMETICA
DOI
https://doi.org/10.4064/aa130-1-5
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Number of rational places of subfields of the function field of the Deligne-Lusztig curve of Ree type
Cakcak, E; Özbudak, Ferruh (Institute of Mathematics, Polish Academy of Sciences, 2005-01-01)
Constructing sequences with high nonlinear complexity using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve
Geil, Olav; Özbudak, Ferruh; Ruano, Diego (Springer Science and Business Media LLC, 2019-06-01)
Using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve over a finite field, we construct sequences with improved high nonlinear complexity. In particular we improve the bound obtained in Niederreiter and Xing (IEEE Trans Inf Theory 60(10):6696-6701, 2014, Theorem3) considerably and the bound in Niederreiter and Xing (2014, Theorem4) for some parameters.
Good action on a finite group
Ercan, Gülin; Jabara, Enrico (Elsevier BV, 2020-10-01)
Let G and A be finite groups with A acting on G by automorphisms. In this paper we introduce the concept of "good action"; namely we say the action of A on G is good, if H = [H, B]C-H (B) for every subgroup B of A and every B-invariant subgroup H of G. This definition allows us to prove a new noncoprime Hall-Higman type theorem.
Character free proofs for two solvability theorems due to Isaacs
Kızmaz, Muhammet Yasir (Informa UK Limited, 2018-01-01)
We give character-free proofs of two solvability theorems due to Isaacs.
Some maximal function fields and additive polynomials
GARCİA, Arnaldo; Özbudak, Ferruh (Informa UK Limited, 2007-01-01)
We derive explicit equations for the maximal function fields F over F-q(2n) given by F = F-q(2n) (X, Y) with the relation A(Y) = f(X), where A(Y) and f(X) are polynomials with coefficients in the finite field F-q(2n), and where A(Y) is q- additive and deg(f) = q(n) + 1. We prove in particular that such maximal function fields F are Galois subfields of the Hermitian function field H over F-q(2n) (i.e., the extension H/F is Galois).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Niederreiter and F. Özbudak, “Low-discrepancy sequences using duality and global function fields,”
ACTA ARITHMETICA
, pp. 79–97, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47278.