Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Label-Free DNA Detection Using a Charge Sensitive CMOS Microarray Sensor Chip
Date
2014-05-01
Author
Musayev, Javid
Adlguzel, Yekbun
KÜLAH, HALUK
Eminoglu, Selim
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
This paper presents label-free DNA detection using a charge sensitive microarray sensor. The microarray sensor, fabricated with a standard CMOS process, contains 1024 detector elements integrated together with their readout circuit in a single chip. This microarray sensor chip is developed for biosensing applications involving label-free detection of charged particles and molecules with improved sensitivity. The proposed chip is used for the detection of DNA immobilization and hybridization by directly sensing the phosphate backbone charge of DNA molecules. The sensing part of the chip consists of an array of 7 mu m x 7 mu m capacitive metal electrodes arranged in 32 x 32 format with a pitch of 15 mu m, which allows implementation of a portable and low-cost microarray sensor. The sensitivity of the microarray sensor is improved compared with other direct charge sensing CMOS biosensors, using low-noise detection and amplification circuits, and implementing correlated double sampling, which reduces the input referred rms noise level down to 6.8 electrons (e(-)). Due to this low noise level, detection of DNA having 1 pM concentration is achieved, showing that the chip is much more sensitive than its counterparts, and even as sensitive as conventional fluorescence or gravimetric detection techniques. A dynamic range of 70 dB is achieved, along with the low noise level. The tests were performed with 10 base pairs DNA in 13-mu M probe (5'-TCTCACCTTC-3') and 1-pM target (3'-AGAGTGGAAG-5') oligomer solutions. In both cases, charges of the DNA molecules interacting with the surface were successfully detected.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/47318
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2014.2301693
Collections
Department of Electrical and Electronics Engineering, Article