Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Production of graded porous polyamide structures and polyamide-epoxy composites via selective laser sintering
Date
2014-06-01
Author
Jande, Yusufu A. C.
Erdal Erdoğmuş, Merve
Dağ, Serkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
Selective laser sintering was used for producing uniformly porous and graded porous polyamide structures. The porous structures were infiltrated with epoxy to produce composites. The porous and composite specimens were physically and mechanically characterized. Within the capabilities of the selective laser sintering machine and the materials used, porosities in the range 5-29% could be obtained in a controlled, repeatable manner. The ultimate tensile strength of the produced uniformly porous polyamide structures ranged from 20 MPa (for 29% porosity) to 44 MPa (for 5% porosity). The graded porous structures exhibited continuously changing porosity grades. As the number of grade increments rose, the grade profile fit closely with the design grade profile. The grades need to be constructed at porosities 9% or more for clear grade variation. Five percent porosity remained in all epoxy-polyamide composites after infiltration of the polyamide preforms with epoxy resin. Improvement in strength with epoxy infiltration was observed for preform porosities above 9%. The composite strength varied from 37 MPa to 44 MPa with respect to epoxy resin volume fraction. The maximum strength of the composites was found to be the same as the strength of the sintered polyamide powder (44 MPa).
Subject Keywords
Mechanical Engineering
,
Materials Chemistry
,
Mechanics of Materials
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/47424
Journal
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
DOI
https://doi.org/10.1177/0731684414522536
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Contribution of carbon nanotubes to vibration damping behavior of epoxy and its carbon fiber composites
Avil, Esma; Kadioglu, Ferhat; Kaynak, Cevdet (SAGE Publications, 2020-04-01)
The main objective of this study was to investigate contribution of the non-functionalized multi-walled carbon nanotubes on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber reinforced epoxy matrix composites. Epoxy/carbon nanotubes nanocomposites were produced by ultrasonic solution mixing method, while the continuous carbon fiber reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the...
Preparation of a conducting flexible material from silane coupling agent and hydroxyl terminated polybutadiene rubber by hydrolysis and condensation
Karatas, Y; Toppare, Levent Kamil; Tincer, T (Informa UK Limited, 2003-01-01)
Synthesis and characterization of a flexible polymer produced from silane coupling agent (SCA) and hydroxyl terminated polybutadiene (HTPB) were performed. Mechanical properties of chemically and electrochemically prepared conducting composites synthesized from this polymer were investigated. Conductivities of the composites were also measured. Polypyrrole enhanced the mechanical properties of the chemically prepared conducting composite. Doping with iodine greatly changed the conductivity of the composite....
Synthesis and Characterization of 2-Hydroxyethyl Methacrylate (HEMA) and Methyl Methacrylate (MMA) Copolymer Used as Biomaterial
Vargun, Elif; SANKIR, MEHMET; Aran, Bengi; DEMİRCİ SANKIR, NURDAN; Usanmaz, Ali (Informa UK Limited, 2010-01-01)
A series of poly(methyl methacrylate-co-hydroxyethyl methacrylate) (PMMA-co-PHEMA), copolymers were synthesized by an emulsion polymerization technique. Copolymer compositions were determined by FT-IR and 1H-NMR spectroscopy. It was found that comonomer ratios used in the recipes were comparable within the actual copolymers. Glass transition temperatures (Tg) of PMMA-co-PHEMA copolymers were varied from 119 degrees C to 100 degrees C by increasing HEMA content. Thermogravimetric analysis showed that the cop...
Production of epoxy composites reinforced by different natural fibers and their mechanical properties
Sarikaya, Engin; Callioglu, Hakan; Demirel, Hakan (Elsevier BV, 2019-06-15)
The aim of this research is the production of epoxy resin composites reinforced by birch, palm, and eucalyptus fibers with resin transfer molding technique and molded fiber production technique combination. The tensile stress of birch, palm, and eucalyptus reinforced epoxy composites were determined as 29.53, 42.24, and 45.28 MPa, respectively. Bending stress of birch, palm and eucalyptus reinforced epoxy composites were found as 58.83, 68.58, and 79.92 MPa, respectively. The birch epoxy composite had 0.105...
Use of Different Alkylammonium Salts in Clay Surface Modification for Epoxy-Based Nanocomposites
Nakas, G. Ipek; Kaynak, Cevdet (Wiley, 2009-03-01)
Layered silicates become widely used reinforcement material in the polymer nanocomposite production in recent years due to their high aspect ratio, ease of processing, and low cost. In this present study, the aim was to evaluate the usability of a raw clay source (Resadiye, Turkey) in the production of epoxy/clay nanocomposites and to investigate the effects of different surface modifiers. For this purpose, raw Namontmorillonite clay was first purified and then surface modified by using different types of a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. A. C. Jande, M. Erdal Erdoğmuş, and S. Dağ, “Production of graded porous polyamide structures and polyamide-epoxy composites via selective laser sintering,”
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
, pp. 1017–1036, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47424.