Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Developing a Twitter bot that can join a discussion using state-of-the-art architectures
Date
2020-07-01
Author
Çetinkaya, Yusuf Mucahit
Toroslu, İsmail Hakkı
Davulcu, Hasan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Today, microblogging platforms like Twitter have become popular by spreading news and opinions that gather attention. Engaging interactions, such as likes, shares, and replies, between users are the key determinants of these platforms' news feed prioritization algorithms. These interactions attract people to ongoing debates and help inform and shape their opinions. Since being influential and attracting followers in these debates are considered as important, understanding the automation of these processes becomes critical in order to contribute positively. In this work, we aim to train a chatbot system that classifies tweets according to their positions, and it can also generate tweets related to a conversation. In this study, we test our system on a recently popular topic, namely the gun control debate in the U.S. Chatbots, are trained to tweet independently for their side and also reply meaningfully to a tweet from the opposite side. State-of-the-art architectures are tested to obtain a more accurate classification. We applied GloVe embedding model for representing tweets. Instead of using handcrafted features, long short-term memory (LSTM) neural network is applied to these embeddings to get more informative and equal-sized feature vectors. This model is trained to encode a tweet as a sequence of embeddings. Encoding is used for both message classification and generation tasks. LSTM sequence-to-sequence model is used to generate topical tweets and replies to tweets. We develop a new salience metric for measuring the relatedness of a generated message to a target tweet. Additionally, human evaluations are performed to measure the quality of the chatbot generated tweets according to their topic relevance and bias, and the quality of its replies to target tweets.
Subject Keywords
Media Technology
,
Human-Computer Interaction
,
Communication
,
Information Systems
,
Computer Science Applications
URI
https://hdl.handle.net/11511/47529
Journal
SOCIAL NETWORK ANALYSIS AND MINING
DOI
https://doi.org/10.1007/s13278-020-00665-4
Collections
Department of Computer Engineering, Article