An Efficient Hybrid Beamforming and Channel Acquisition for Wideband mm-Wave Massive MIMO Channels

2019-01-01
In this paper, an efficient hybrid beamforming architecture together with a novel spatio-temporal receiver processing is proposed for single-carrier (SC) mm-wave wideband massive MIMO channels in time-domain duplex (TDD) mode. The design of two-stage beamformers is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sectors) and the inter-symbol-interference (due to SC wideband transmission) are taken into account. While designing the analog beamformer, we examine the dimension reduction problem and proper subspace (beamspace) construction (by exploiting the joint angle-delay sparsity map and power profile of the multi-user channel) based on which a highly efficient spatio-temporal digital receiver processing is proposed. Furthermore, a least square type channel estimator, based on a proper subspace projection via radio frequency (RF) processing, is proposed. It is shown to achieve a remarkable robustness to pilot contamination with a significant reduction in pilot length. Moreover, the effect of utilizing inaccurate estimates for channel covariance matrices (CCMs) on achievable information rate (AIR) is analyzed. The sensitivity of proposed techniques with respect to estimation accuracy of central angle and the angular spread (AS) of angle-of-arrival (AoA) values is investigated.

Suggestions

A General framework on adaptive hybrid beamformingand channel acquisition for wideband mm-wave massive MIMO systems
Kurt, Anıl; Güvensen, Gökhan Muzzaffer.; Department of Electrical and Electronics Engineering (2019)
In this thesis, an efficient hybrid beamforming architecture together with a novel spatio-temporal receiver processing is proposed for single-carrier (SC) mm-wave wideband massive MIMO channels in time-domain duplex (TDD) mode. The design of two-stage beamformer is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sec...
An Efficient beam and channel acquisition via sparsity map and joint angle-delay power profile estimation for wideband massive MIMO systems
Kalaycı, Ali Osman; Güvensen, Gökhan Muzaffer; Department of Electrical and Electronics Engineering (2019)
In this thesis, an efficient beam and instantaneous channel acquisition scheme together with joint angle-delay power profile (JADPP), scatter map, construction are proposed for single-carrier (SC) mm-wave wideband sparse massive multiple-input multiple-output (MIMO) channels when hybrid beamforming architecture is utilized. We consider two different modes of operation, namely slow-time beam acquisition and fast-time instantaneous channel estimation, in training stage of time division duplex (TDD) based syst...
An efficient ungerboeck type MAP receiver for multi-user channel with M-Ary quasi orthogonal signaling M-Ary yakla̧sik dikgen sinyalleşme ile çoklu erişim için etkin ungerboeck tipinde MAP alicisi
Güvensen, Gökhan Muzaffer; Tanık, Yalçın; Yılmaz, Ali Özgür (2013-08-05)
In this paper, a high performance MAP receiver with significantly reduced complexity is proposed for multiple-access channel with M-ary quasi orthogonal signaling. The proposed architecture operates on the channel and code matched filters (MF) belonging to each users signaling waveforms. The proposed MAP receiver is based on the factor graph (FG) obtained by using the equivalent channel model, and it operates on forward and backward directions along signaling intervals iteratively. Also, it is substantiated...
A Reduced complexity hybrid precoding architecture and user grouping algorithms for downlink wideband massive MIMO channels
Kilcioğlu, Emre; Güvensen, Gökhan Muzaffer; Department of Electrical and Electronics Engineering (2019)
In this thesis, an efficient hybrid precoding architecture is proposed for single-carrier (SC) downlink wideband spatially correlated massive multiple-input multiple-output (MIMO) channels. The design of two-stage beamformers is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sectors) and the inter-symbol-interferen...
Robust spread spectrum type communication with M-ary quasi orthogonal signaling for wireless fading channels M-ary yaklaşik dikgen sinyalleşme ile yayili spektruma sahip sistemler için etkin telsiz haberleşme
Güvensen, Gökhan Muzaffer; Tanık, Yalçın; Yılmaz, Ali Özgür (2012-07-09)
In this paper, a receiver architecture with reduced complexity is proposed for spread spectrum type communication with M-ary quasi orthogonal signaling. The proposed structure comprises of the channel and code matched filtering (MF) concatenated with a reduced state maximum likelihood sequence estimation (MLSE) type processing at symbol rate. MLSE, which takes the interference caused by nonideal cross- and autocorrelations of the spreading codes and multi-path channel into account, is directly applied to th...
Citation Formats
A. Kurt and G. M. Güvensen, “An Efficient Hybrid Beamforming and Channel Acquisition for Wideband mm-Wave Massive MIMO Channels,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47539.