Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Alcohol determination via covalent enzyme immobilization on magnetic beads
Date
2008-01-15
Author
Kiralp, Senem
Topcu, Asuman
Bayramoglu, Guelay
Arica, M. Yakup
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Alcohol oxidase was covalently immobilized onto magnetic beads of two different sizes, 75-150 mu m and 50-75 mu m in diameter, fabricated in the presence of glycidylmethacrylate and methylmethacrylate via suspension polymerization in the presence of a cross-linker (i.e., ethylenedimethylmethacrylate). The activity of the enzyme on smaller microspheres was found to be almost 4.8 fold higher than that of the larger counterparts. Although enzyme loading was same for both fractions, activity and the affinity of immobilized enzyme were significantly altered. The effects of various parameters such as temperature, pH, operational and storage stability were examined. The substantial change in the activity of enzyme was also observed in stability experiments in favor of large size magnetic beads. For all stability experiments including storage stability, the 75-150 mu m fraction was found to be more sentinel support for the enzyme.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
,
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
,
Metals and Alloys
URI
https://hdl.handle.net/11511/47582
Journal
SENSORS AND ACTUATORS B-CHEMICAL
DOI
https://doi.org/10.1016/j.snb.2007.07.035
Collections
Department of Chemistry, Article