Sufficient Conditions on Observability Grammian for Synchronization in Arrays of Coupled Linear Time-Varying Systems

2010-11-01
Synchronizability of stable, output-coupled, identical, linear time-varying systems is studied. It is shown that if the observability grammian satisfies a persistence of excitation condition, then there exists a bounded, linear time-varying feedback law that yields exponential synchronization for all fixed, asymmetrical interconnections with connected graphs. Also, a weaker condition on the grammian is given for asymptotic synchronization. No assumption is made on the strength of coupling between the systems.
IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Suggestions

Conditions for Synchronizability in Arrays of Coupled Linear Systems
Tuna, Sezai Emre (2009-10-01)
Synchronization in arrays of coupled continuous-time linear systems is studied. Sufficiency of certain conditions for the existence of a synchronizing feedback law are analyzed. It is shown that, for neutrally stable systems that are detectable from their outputs, a linear feedback law exists under which any number of coupled systems synchronize provided that the (directed, weighted) graph describing the interconnection is fixed and connected. An algorithm generating one such feedback law as well as the tra...
Linear parameter varying control for autonomous systems: methods and application examples
Çalış, Fatih; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2022-8-24)
Linear parameter varying (LPV) systems are nonlinear systems which can be modelled as linear systems whose parameters change as a function of different "scheduling parameters". In other words, the dynamics of the LPV systems change during the operation hence they require a parameter dependent controller. Although classical gain-scheduling approaches satisfy some performance criteria for constant dynamics, they don't guarantee stability while the scheduling parameter is changing. On the other hand, H∞-norm b...
Stability criteria for linear periodic impulsive Hamiltonian systems
Guseinov, G. Sh.; Zafer, Ağacık (2007-11-15)
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
Implementation of different algorithms in linear mixed models: case studies with TIMSS
Koca, Burcu; Gökalp Yavuz, Fulya; Department of Statistics (2021-9-06)
Mixed models are frequently used in longitudinal data types with time repetition over the same subject and clustered data types formed by observations gathered around certain groups. The modeling technique which models the dependency structure between repetitions and observations in the same cluster is required to use algorithms for parameter estimations. The same model can be solved with various algorithms arising from setup, inference and approach differences. In this study, several algorithms used for LM...
A Numerical Comparison of Frozen-Time and Forward-Propagating Riccati Equations for Stabilization of Periodically Time-Varying Systems
Prach, Anna; Tekinalp, Ozan; Bernstein, Dennis S. (2014-12-06)
Feedback control of linear time-varying systems arises in numerous applications. In this paper we numerically investigate and compare the performance of two heuristic techniques. The first technique is the frozen-time Riccati equation, which is analogous to the state-dependent Riccati equation, where the instantaneous dynamics matrix is used within an algebraic Riccati equation solved at each time step. The second technique is the forward-propagating Riccati equation, which solves the differential algebraic...
Citation Formats
S. E. Tuna, “Sufficient Conditions on Observability Grammian for Synchronization in Arrays of Coupled Linear Time-Varying Systems,” IEEE TRANSACTIONS ON AUTOMATIC CONTROL, pp. 2586–2590, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47622.