Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stability criteria for linear periodic impulsive Hamiltonian systems
Date
2007-11-15
Author
Guseinov, G. Sh.
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
Subject Keywords
Periodic system
,
Impulse
,
Linear
,
Hamiltonian
,
Stability
URI
https://hdl.handle.net/11511/56881
Journal
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
DOI
https://doi.org/10.1016/j.jmaa.2007.01.095
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Stability criteria for linear Hamiltonian systems under impulsive perturbations
Kayar, Z.; Zafer, Ağacık (2014-03-01)
Stability criteria are given for planar linear periodic Hamiltonian systems with impulse effect by making use of a Lyapunov type inequality. A disconjugacy criterion is also established. The results improve the related ones in the literature for such systems.
Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria
Zafer, Ağacık (2012-12-15)
In this paper, we first establish new Lyapunov type inequalities for discrete planar linear Hamiltonian systems. Next, by making use of the inequalities, we derive stability and disconjugacy criteria. Stability criteria are obtained with the help of the Floquet theory, so the system is assumed to be periodic in that case.
On periodic solutions of linear impulsive delay differential systems
Akhmet, Marat; Alzabut, J.O.; Zafer, Ağacık (2008-10-01)
A necessary and sufficient condition is established for the existence of periodic solutions of linear impulsive delay differential systems. Copyright © 2008 Watam Press.
Stability in non-autonomous periodic systems with grazing stationary impacts
Akhmet, Marat (2017-01-01)
This paper examines impulsive non-autonomous periodic systems whose surfaces of discontinuity and impact functions are not depending on the time variable. The W-map which alters the system with variable moments of impulses to that with fixed moments and facilitates the investigations, is presented. A particular linearizion system with two compartments is utilized to analyze stability of a grazing periodic solution. A significant way to keep down a singularity in linearizion is demonstrated. A concise review...
Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2012-03-01)
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. S. Guseinov and A. Zafer, “Stability criteria for linear periodic impulsive Hamiltonian systems,”
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, pp. 1195–1206, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56881.