Stability criteria for linear periodic impulsive Hamiltonian systems

2007-11-15
Guseinov, G. Sh.
Zafer, Ağacık
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Suggestions

Stability criteria for linear Hamiltonian systems under impulsive perturbations
Kayar, Z.; Zafer, Ağacık (2014-03-01)
Stability criteria are given for planar linear periodic Hamiltonian systems with impulse effect by making use of a Lyapunov type inequality. A disconjugacy criterion is also established. The results improve the related ones in the literature for such systems.
Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria
Zafer, Ağacık (2012-12-15)
In this paper, we first establish new Lyapunov type inequalities for discrete planar linear Hamiltonian systems. Next, by making use of the inequalities, we derive stability and disconjugacy criteria. Stability criteria are obtained with the help of the Floquet theory, so the system is assumed to be periodic in that case.
Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2012-03-01)
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
Stability in non-autonomous periodic systems with grazing stationary impacts
Akhmet, Marat (2017-01-01)
This paper examines impulsive non-autonomous periodic systems whose surfaces of discontinuity and impact functions are not depending on the time variable. The W-map which alters the system with variable moments of impulses to that with fixed moments and facilitates the investigations, is presented. A particular linearizion system with two compartments is utilized to analyze stability of a grazing periodic solution. A significant way to keep down a singularity in linearizion is demonstrated. A concise review...
Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation Formats
G. S. Guseinov and A. Zafer, “Stability criteria for linear periodic impulsive Hamiltonian systems,” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, pp. 1195–1206, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56881.