Hide/Show Apps

Surface mapping class groups are ultrahopfian

Korkmaz, Mustafa
McCarthy, JD
Let S denote a compact, connected, orientable surface with genus g and h boundary components. We refer to S as a surface of genus g with h holes. Let [Mscr ]S denote the mapping class group of S, the group of isotopy classes of orientation-preserving homeomorphisms S → S. Let G be a group. G is hopfian if every homomorphism from G onto itself is an automorphism. G is residually finite if for every g ∈ G with g ≠ 1 there exists a normal subgroup of finite index in G which does not contain g. Every finitely generated residually finite group is hopfian ([11, 12]). A group G is hyperhopfian ([2, 3]) if every homomorphism ψ G → G with ψ(G) normal in G and G/ψ(G) cyclic is an automorphism. As observed in [14], examples of hopfian groups which are not hyperhopfian are afforded by the fundamental groups of torus knots. By a result of Grossman [5], [Mscr ]S is residually finite. Since [Mscr ]S is also finitely generated, it is hopfian. It is a natural question to ask whether [Mscr ]S is hyperhopfian. In this paper, we shall answer a more general question. We say that a group G is ultrahopfian if every homomorphism ψ: G → G with ψ(G) normal in G and G/ψ(G) abelian is an automorphism. Note that an ultrahopfian group is hyperhopfian. We shall prove the following result.