Surface mapping class groups are ultrahopfian

2000-07-01
Korkmaz, Mustafa
McCarthy, JD
Let S denote a compact, connected, orientable surface with genus g and h boundary components. We refer to S as a surface of genus g with h holes. Let [Mscr ]S denote the mapping class group of S, the group of isotopy classes of orientation-preserving homeomorphisms S → S. Let G be a group. G is hopfian if every homomorphism from G onto itself is an automorphism. G is residually finite if for every g ∈ G with g ≠ 1 there exists a normal subgroup of finite index in G which does not contain g. Every finitely generated residually finite group is hopfian ([11, 12]). A group G is hyperhopfian ([2, 3]) if every homomorphism ψ G → G with ψ(G) normal in G and G/ψ(G) cyclic is an automorphism. As observed in [14], examples of hopfian groups which are not hyperhopfian are afforded by the fundamental groups of torus knots. By a result of Grossman [5], [Mscr ]S is residually finite. Since [Mscr ]S is also finitely generated, it is hopfian. It is a natural question to ask whether [Mscr ]S is hyperhopfian. In this paper, we shall answer a more general question. We say that a group G is ultrahopfian if every homomorphism ψ: G → G with ψ(G) normal in G and G/ψ(G) abelian is an automorphism. Note that an ultrahopfian group is hyperhopfian. We shall prove the following result.

Citation Formats
M. Korkmaz and J. McCarthy, “Surface mapping class groups are ultrahopfian,” MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, vol. 129, pp. 35–53, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47648.