Effects of implementing MODIS land cover and albedo in MM5 at two contrasting US regions

2006-10-01
This study implements a new land-cover classification and surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) and investigates its effects on regional near-surface atmospheric state variables as well as the planetary boundary layer evolution for two dissimilar U.S. regions. Surface parameter datasets are determined by translating the 17-category MODIS classes into the U.S. Geological Survey (USGS) and Simple Biosphere (SiB) categories available for use in MM5. Changes in land-cover specification or associated parameters affected surface wind, temperature, and humidity fields, which, in turn, resulted in perceivable alterations in the evolving structure of the planetary boundary layer. Inclusion of the MODIS albedo into the simulations enhanced these impacts further. Area-averaged comparisons with ground measurements showed remarkable improvements in near-surface temperature and humidity at both study areas when MM5 is initialized with MODIS land-cover and albedo data. Influence of both MODIS surface datasets is more significant at a semiarid location in the southwest of the United States than it is in a humid location in the mid-Atlantic region. Intense summertime surface heating at the semiarid location creates favorable conditions for strong land surface forcing. For example, when the simulations include MODIS land cover and MODIS albedo, respective error reduction rates were 6% and 11% in temperature and 2% and 2.5% in humidity in the southwest of the United States. Error reduction rates in near-surface atmospheric fields are considered important in the design of mesoscale weather simulations.
JOURNAL OF HYDROMETEOROLOGY

Suggestions

Impact of ingesting satellite-derived cloud cover into the Regional Atmospheric Modeling System
Yücel, İsmail; Pinker, RT; Lu, L; Sorooshian, S (American Meteorological Society, 2002-03-01)
This study investigates the extent to which assimilating high-resolution remotely sensed cloud cover into the Regional Atmospheric Modeling System (RAMS) provides an improved regional diagnosis of downward short- and longwave surface radiation fluxes and precipitation. An automatic procedure was developed to derive high-resolution (4 km 3 4 km) fields of fractional cloud cover from visible band Geostationary Operational Environmental Satellite (GOES) data using a tracking procedure to determine the clear-sk...
Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting
Yılmaz, Koray Kamil; Hsu, KL; Sorooshian, S; Gupta, HV; Wagener, T (American Meteorological Society, 2005-08-01)
This study compares mean areal precipitation (MAP) estimates derived from three sources: an operational rain gauge network (MAPG), a radar/gauge multisensor product (MAPX), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellite-based system (MAPS) for the time period from March 2000 to November 2003. The study area includes seven operational basins of varying size and location in the southeastern United States. The analysis indicates that agre...
Multiregional Satellite Precipitation Products Evaluation over Complex Terrain
Derin, Yagmur; Anagnostou, Emmanouil; Berne, Alexis; BORGA, Marco; BOUDEVILLAIN, Brice; BUYTAERT, Wouter; CHANG, Che-Hao; DELRIEU, Guy; HONG, Yang; HSU, Yung Chia; LAVADO-CASIMIRO, Waldo; MANZ, Bastian; MOGES, Semu; NIKOLOPOULOS, Efthymios I.; SAHLU, Dejene; SALERNO, Franco; RODRIGUEZ-SANCHEZ, Juan-Pablo; VERGARA, Humberto J.; Yılmaz, Koray Kamil (American Meteorological Society, 2016-06-01)
An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using aminimumof 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea ...
Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography
DERIN, Yagmur; Yılmaz, Koray Kamil (American Meteorological Society, 2014-08-01)
This study evaluates the performance of four satellite-based precipitation (SBP) products over the western Black Sea region of Turkey, a region characterized by complex topography that exerts strong controls on the precipitation regime. The four SBP products include the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis version 7 experimental near-real-time product (TMPA-7RT) and post-real-time research-quality product (TMPA-7A), the Climate Prediction Center morphing technique...
Impact of Model Relative Accuracy in Framework of Resealing Observations in Hydrological Data Assimilation Studies
Yılmaz, Mustafa Tuğrul; Ryu, D. (American Meteorological Society, 2016-08-01)
Soil moisture datasets vary greatly with respect to their time series variability and signal-to-noise characteristics. Minimizing differences in signal variances is particularly important in data assimilation to optimize the accuracy of the analysis obtained after merging model and observation datasets. Strategies that reduce these differences are typically based on resealing the observation time series to match the model. As a result, the impact of the relative accuracy of the model reference dataset is of...
Citation Formats
İ. Yücel, “Effects of implementing MODIS land cover and albedo in MM5 at two contrasting US regions,” JOURNAL OF HYDROMETEOROLOGY, pp. 1043–1060, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47680.