Accurate Solutions of Extremely Large Integral-Equation Problems in Computational Electromagnetics

Download
2013-02-01
Accurate simulations of real-life electromagnetics problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be achieved easily, even when using the most powerful computers with state-of-the-art technology. However, with the multilevel fast multipole algorithm (MLFMA) and parallel MLFMA, we have been able to obtain full-wave solutions of scattering problems discretized with hundreds of millions of unknowns. Some of the complicated real-life problems (such as scattering from a realistic aircraft) involve geometries that are larger than 1000 wavelengths. Accurate solutions of such problems can be used as benchmarking data for many purposes and even as reference data for high-frequency techniques. Solutions of extremely large canonical benchmark problems involving sphere and National Aeronautics and Space Administration (NASA) Almond geometries are presented, in addition to the solution of complicated objects, such as the Flamme. The parallel implementation is also extended to solve very large dielectric problems, such as dielectric lenses and photonic crystals.
PROCEEDINGS OF THE IEEE

Suggestions

Rigorous Solutions of Electromagnetic Problems Involving Hundreds of Millions of Unknowns
Ergül, Özgür Salih (2011-02-01)
Accurate simulations of real-life electromagnetic problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be easily achieved, even when using the most powerful computers with state-of-the-art technology. Hence, many electromagnetic problems in the literature have been solved by resorting to various approximation techniques, without controllable error. In this paper, we present full-wave solutions of sc...
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2011-01-01)
Fast and accurate analysis of double-negative materials (DNMs) with the surface integral equations and the multilevel fast multipole algorithm (MLFMA) is considered. DNMs, which are commonly used as simplified models of metamaterials at resonance frequencies, can be formulated with the surface integral equations. Two recently developed formulations-namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE)-are used to formulate DNMs. Ite...
Improving the accuracy of the surface integral equations for low-contrast dielectric scatterers
Ergül, Özgür Salih (2007-06-15)
Solutions of scattering problems involving low-contrast dielectric objects are considered by employing surface integral equations. A stabilization procedure based on extracting the non-radiating part of the induced currents is applied so that the remaining radiating currents can be modelled appropriately and the scattered fields from the low-contrast objects can be calculated with improved accuracy. Stabilization is applied to both tangential (T) and normal (N) formulations in order to use the benefits of d...
Citation Formats
Ö. S. Ergül, “Accurate Solutions of Extremely Large Integral-Equation Problems in Computational Electromagnetics,” PROCEEDINGS OF THE IEEE, pp. 342–349, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47686.