Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
RRW: repeated random walks on genome-scale protein networks for local cluster discovery
Download
index.pdf
Date
2009-09-09
Author
MACROPOL, Kathy
Can, Tolga
Singh, Ambuj K.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
90
downloads
Cite This
Background: We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e. g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins.
Subject Keywords
Complexes
,
Algorithms
,
Modules
URI
https://hdl.handle.net/11511/47692
Journal
BMC BIOINFORMATICS
DOI
https://doi.org/10.1186/1471-2105-10-283
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Rigorous optimizations of three dimensional antenna arrays using full wave simulations
Onol, Can; Gokce, Ozer; Boyacı, Huseyın; Ergül, Özgür Salih (null; 2015-07-09)
We present optimizations of three-dimensional antenna arrays using heuristic techniques coupled with the multilevel fast multipole algorithm (MLFMA). Without resorting to any periodicity and infinity assumptions, antenna arrays are modeled with surface integral equations and simulated via MLFMA, which also enables the analysis of arrays with non-identical elements. Genetic algorithms and particle swarm optimization methods are employed on the complex data produced by MLFMA in phasor domain to find optimal s...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Rigorous Solutions of Large-Scale Scattering Problems Discretized with Hundreds of Millions of Unknowns
Guerel, L.; Ergül, Özgür Salih (2009-09-18)
We present fast and accurate solutions of large-scale scattering problems using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). By employing a hierarchical partitioning strategy, MLFMA can be parallelized efficiently on distributed-memory architectures. This way, it becomes possible to solve very large problems discretized with hundreds of millions of unknowns. Effectiveness of the developed simulation environment is demonstrated on various scattering problems involving canonic...
Nested Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-24)
Nested iterative solutions using full and approximate forms of the multilevel fast multipole algorithm (MLFMA) are presented for efficient analysis of electromagnetic problems. The developed mechanism is based on preconditioning an iterative solution via another iterative solution, and this way, nesting multiple solutions as layers. The accuracy is systematically reduced from top to bottom by using the on-the-fly characteristics of MLFMA, as well as the iterative residual errors. As a demonstration, a three...
PARALLEL IMPLEMENTATION OF MLFMA FOR HOMOGENEOUS OBJECTS WITH VARIOUS MATERIAL PROPERTIES
Ergül, Özgür Salih (2011-01-01)
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of electromagnetics problems involving homogeneous objects with diverse material properties. Problems are formulated rigorously with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively using MLFMA parallelized with the hierarchical partitioning strategy. Accuracy and efficiency of the resulting implementation are demonstrated on canonical prob...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. MACROPOL, T. Can, and A. K. Singh, “RRW: repeated random walks on genome-scale protein networks for local cluster discovery,”
BMC BIOINFORMATICS
, pp. 0–0, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47692.