Hide/Show Apps

Design and evaluation of V-shaped arrays for 2-D DOA estimation

Filik, Tansu
Tuncer, Temel Engin
A new method for optimum design of V-shaped arrays is presented for azimuth and elevation angle estimation simultaneously. The design criterion is based on the Cramer-Rao Bound (CRB) for joint estimation where the coupling effect between the azimuth and elevation direction of arrival (DOA) angles is taken into account. The design method finds an optimum angle between the linear sub-arrays of the V-array. The computation of the optimum angle is simple due to the monotonic characteristics of the best and worst performance levels of CRB. The proposed method can be used to obtain directional arrays with significantly better DOA performance compared to the circular arrays. Furthermore V-array angle can be chosen for isotropic angle performance which is better than the circular arrays. The modeling error for the sensor positions is also investigated. It is shown that both V-array and circular array have similar robustness for the position errors.