Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery
Download
index.pdf
Date
2008-02-15
Author
Yılmaz, Mustafa Tuğrul
Goins, Lyssa D.
Ustin, Susan L.
Vanderbilt, Vern C.
Jackson, Thomas J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
142
downloads
Cite This
Vegetation water content is an important parameter for retrieval of soil moisture from microwave data and for other remote sensing applications. Because liquid water absorbs in the shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5 Thematic Mapper band 4 (0.76-0.90 mu m wavelength) and band 5 (1.55-1.65 mu m wavelength), can be used to determine canopy equivalent water thickness (EWT), which is defined as the water volume per leaf area times the leaf area index (LAI). Alternatively, average canopy EWT can be determined using a landcover classification, because different vegetation types have different average LAI at the peak of the growing season. The primary contribution of this study for the Soil Moisture Experiment 2004 was to sample vegetation for the Axizona and Sonora study areas. Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a plant canopy analyzer and digital hemispherical (fisheye) photographs. NDII was linearly related to measured canopy EWT with an R-2 of 0.601. Landcover of the Arizona, USA, and Sonora, Mexico, study areas were classified with an overall accuracy of 70% using a rule-based decision tree using three dates of Landsat 5 Thematic Mapper imagery and digital elevation data. There was a large range of NDII per landcover class at the peak of the growing season, indicating that canopy EWT should be estimated directly using NDII or other shortwave-infrared vegetation indices. However, landcover classifications will still be necessary to obtain total vegetation water content from canopy EWT and other data, because considerable liquid water is contained in the non-foliar components of vegetation. Published by Elsevier Inc.
Subject Keywords
Computers in Earth Sciences
,
Soil Science
,
Geology
URI
https://hdl.handle.net/11511/47750
Journal
Remote Sensing of Environment
DOI
https://doi.org/10.1016/j.rse.2007.03.029
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Remote sensing of vegetation water content from equivalent water thickness using satellite imagery
Yılmaz, Mustafa Tuğrul; Jackson, Thomas J. (Elsevier BV, 2008-05-15)
Vegetation water content (VWC) is one of the most important parameters for the successful retrieval of soil moisture content from microwave data. Normalized Difference Infrared Index (NDII) is a widely-used index to remotely sense Equivalent Water Thickness (EWT) of leaves and canopies; however, the amount of water in the foliage is a small part of total VWC. Sites of corn (Zea mays), soybean (Glycine max), and deciduous hardwood woodlands were sampled to estimate EWT and VWC during the Soil Moisture Experi...
Remote sensing of leaf equivalent water thickness and vegetation water content using shortwave infrared reflectances
Hunt, Er; Yılmaz, Mustafa Tuğrul; Jackson, Tj (null; 2008-04-28)
Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. One of the objectives of the Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) were to develop and test algorithms for a vegetation water content data product using shortwave infrared reflectances. SMEX04 studied native vegetation in Arizona, USA, and Sonora, Mexico, while SMEX05 studied corn and soybean in Iowa, USA. The normalized difference infrared index (NDII) is defined...
Remote sensing of vegetation water content using shortwave infrared reflectances
Hunt Jr., E. Raymond; Yılmaz, Mustafa Tuğrul (2007-12-01)
Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. One of the objectives of the Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) were to develop and test algorithms for a vegetation water content data product using shortwave infrared reflectances. SMEX04 studied native vegetation in Arizona, USA, and Sonora, Mexico, while SMEX05 studied corn and soybean in Iowa, USA. The normalized difference infrared index (NDII) is defined...
Comparison of vegetation water content estimates from WindSat and MODIS
Hunt Jr., E. Raymond; Li, Li; Yılmaz, Mustafa Tuğrul; Jackson, Thomas J. (2010-12-01)
Retrieval of soil moisture content from microwave sensors also returns an estimate of vegetation water content. Remotely sensed indices from optical sensors can be used to estimate canopy water content. For corn and soybean in central Iowa, there are allometric relationships between canopy water content and vegetation water content. The Normalized Difference Infrared Index from MODIS was used to estimate vegetation water content. We compared independent estimates of vegetation water content from WindSat and...
Integration of environmental variables with satellite images in regional scale vegetation classification
Domaç, Ayşegül; Süzen, Mehmet Lütfi; Bilgin, Cemal Can (Informa UK Limited, 2006-04-01)
The difficulty of collecting information at conventional field studies and relatively coarse spatial and spectral resolution of Landsat images forced the use of environmental variables as ancillary data in vegetation mapping. The aim of this study is to increase the accuracy of species level vegetation classification incorporating environmental variables in the Amanos Mountains region of southern central Turkey. In the first part of the study, ordinary vegetation classification is attained by using a maximu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. T. Yılmaz, L. D. Goins, S. L. Ustin, V. C. Vanderbilt, and T. J. Jackson, “Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery,”
Remote Sensing of Environment
, pp. 350–362, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47750.