Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
DIRECTIONALLY ADAPTIVE SUPER-RESOLUTION
Date
2009-11-10
Author
Turgay, Emre
Akar, Gözde
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
In this paper a novel direction adaptive super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction for optimal noise reduction while preserving the edges. Compared to the other edge-preserving methods, the proposed algorithm uses gradient direction in addition to the gradient amplitude for optimum regularization. The method comprises a gradient amplitude and direction estimation stage where a gradient direction map is obtained. This map guides the SR reconstruction stage through iterations. Three variations of the proposed method are compared against other edge-preserving super resolution methods. PSNR (Peak signal-to-noise-ratio), SSIM (Structural similarity index measure) values, and illustrations show that the proposed method has better performance especially on image pixel values where a strong gradient is present.
Subject Keywords
Maximum a-posteriori
,
Gradient
,
Directional regularization
,
Edge preservation
,
Super-resolution
URI
https://hdl.handle.net/11511/47764
DOI
https://doi.org/10.1109/icip.2009.5413662
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar