Development of a rapid-scan fiber-integrated terahertz spectrometer

Keskin, Hakan
Altan, Hakan
Yavas, Seydi
İLDAY, Fatih Ömer
Eken, Koray
Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the J-mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.


Development of a pulsed fiber laser for ladar system
Dülgergil, Ebru; Altan, Hakan; Department of Physics (2012)
In recent years laser technology has increasingly developed with the use of fiber lasers and this has provided the possibility to implement different techniques in the defense industry. LADAR is at the forefront of these techniques. Fiber lasers constitute a perfect source for LADAR systems due to their excellent robustness, compact size and high-power generation capability. In this study we will explore the development of a pulsed fiber laser source for a LADAR system that can obtain high resolution 3D ima...
Zolfaghari Borra, Mona; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2021-7-29)
The integration of photonic components with electrical elements on the same silicon chip may lead to the development of new technologies. One limitation is the space available on the wafer surface, which is restricted. Currently, conventional fabrication techniques produce devices only on the top thin layer of the wafer surface. As a result, new architectural designs are required. Producing functional components deep inside Si without creating damage to the surfaces is a potential technique for overcoming t...
Development of a picosecond pulsed mode-locked fiber laser
Yağcı, Mahmut Emre; Altan, Hakan; Department of Physics (2013)
Fiber lasers represent the state-of-the-art in laser technology and hold great promise for a wide range of applications because they have a minimum of exposed optical interfaces, very high efficiency, and are capable of exceptional beam quality. In the near future, the most important markets such as micromachining, automotive, biomedical and military applications will begin to use this technology. The scope of this thesis is to design and develop a short picosecond pulsed fiber laser using rare-earth doped ...
Design, modeling and control of 4-axis electro-optical director for high energy laser application
Mavuş, Ahmet; Balkan, Raif Tuna; Department of Mechanical Engineering (2019)
With the development of laser technology, high power applications increasingly play significant roles in industry, military, and communication fields. Thus, handling large payloads, precisely steering laser beams comes into prominence. Achieving appropriate stiffness in mechanical design, optimal actuator and sensor selection, successful control strategy, and elaborative testing are factors involved in determining the system performance. In this study, firstly, a thorough literature review is conducted. Nex...
Simulations and Experiments of EMFY-1 Electromagnetic Launcher
Ceylan, Doga; Karagoz, Mustafa; Cevik, Yasin; Yildirim, Baran; Polat, Hakan; Keysan, Ozan (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
ASELSAN Inc. has been conducting experimental research on electromagnetic launch technologies since 2014. The first prototype, EMFY-1, has 25 mm x 25 mm square bore and 3-m-length rails. In addition, two capacitor-based pulsed-power supplies (PPSs) with 1- and 4-MJ stored energy are built to supply launcher. During the design process of EMFY-1, a 3-D finite element (FE) model has been developed to simulate the electromagnetic and mechanical aspects of the railgun. This paper presents the simulation and expe...
Citation Formats
H. Keskin, H. Altan, S. Yavas, F. Ö. İLDAY, K. Eken, and A. B. ŞAHİN, “Development of a rapid-scan fiber-integrated terahertz spectrometer,” OPTICAL AND QUANTUM ELECTRONICS, pp. 495–503, 2014, Accessed: 00, 2020. [Online]. Available: