Development of a picosecond pulsed mode-locked fiber laser

Yağcı, Mahmut Emre
Fiber lasers represent the state-of-the-art in laser technology and hold great promise for a wide range of applications because they have a minimum of exposed optical interfaces, very high efficiency, and are capable of exceptional beam quality. In the near future, the most important markets such as micromachining, automotive, biomedical and military applications will begin to use this technology. The scope of this thesis is to design and develop a short picosecond pulsed fiber laser using rare-earth doped fiber as a gain medium. The proposed master oscillator power amplifier (MOPA) will be used to generate pulses with high repetition rates. In this study, first we explain the basic theoretical background of nonlinear optics and fiber laser. Then, the numerical simulation will be introduced to explain how the laser system design and optimization. The simulation is based on nonlinear Schrödinger equation with the method of split-step evaluation. The brief theoretical background and simulation results of the laser system will be shown. Finally, the experimental study of the developmental fiber laser system that comprises an oscillator, preamplifier and power amplifier will be discussed. .


Development of a pulsed fiber laser for ladar system
Dülgergil, Ebru; Altan, Hakan; Department of Physics (2012)
In recent years laser technology has increasingly developed with the use of fiber lasers and this has provided the possibility to implement different techniques in the defense industry. LADAR is at the forefront of these techniques. Fiber lasers constitute a perfect source for LADAR systems due to their excellent robustness, compact size and high-power generation capability. In this study we will explore the development of a pulsed fiber laser source for a LADAR system that can obtain high resolution 3D ima...
An Automated calibration set up for laser beam positioning systems in visual inspection applications
Kiraz, Ercan; Dölen, Melik; Department of Mechanical Engineering (2013)
In this study, a calibration setup for laser beam positioning systems used in visual inspection applications in industry is designed and manufactured. The laser positioning systems generate movable parallel laser lines on the projection surface. There are several translational and angular error sources affecting the positioning accuracy of the laser lines on the projection surface. Especially, since the laser line positioning error caused by angular error sources increases with the distance between the lase...
Development of a rapid-scan fiber-integrated terahertz spectrometer
Keskin, Hakan; Altan, Hakan; Yavas, Seydi; İLDAY, Fatih Ömer; Eken, Koray; ŞAHİN, ASAF BEHZAT (2014-04-01)
Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characteriz...
Development of a 60 w pulsed fiber laser amplifier for materials processing
Aydın, Yiğit Ozan; Bek, Alpan; Şahin, Asaf Behzat; Department of Micro and Nanotechnology (2014)
Fiber lasers have the advantage of high beam quality, high efficiency, small size, air cooling and therefore much interest in the development of high power fiber laser systems have arisen recently in the world. Almost all commercially developed fiber lasers with nanosecond pulse duration, that are being used for material processing, are Q-switched systems. Vital parameters in the material processing such as repetition rate, pulse energy and pulse duration are correlated with each other and they cannot be ad...
Power stabilization of diode pumped solid state lasers by means of adaptive control of drive current
Şentürk, Tayfun; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2019)
Lasers provide precision and sensitivity for various applications. However, some fundamental properties make lasers very susceptible to external changes. When stability of laser parameters is required the traditional approach is to stabilize the working environment, such as strict temperature and climate control, mechanical isolation as well as damping of any vibration. This traditional approach is very difficult to implement in harsh industrial environments and almost impossible for many military applicati...
Citation Formats
M. E. Yağcı, “Development of a picosecond pulsed mode-locked fiber laser,” M.S. - Master of Science, Middle East Technical University, 2013.