Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment
Date
2015-08-18
Author
CANSIZ, F. Baris Can
Dal, Hüsnü
KALISKE, Michael
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445-3475]. The essential aspect of the proposed model is the account of distinct relaxation mechanisms for each orientation direction. To this end, the non-equilibrium response of the free energy function is constructed in the logarithmic strain space and additively decomposed into three anisotropic parts, denoting fibre, sheet and normal directions each accompanied by a distinct dissipation potential governing the evolution of viscous strains associated with each orientation direction. The evolution equations governing the viscous flow have an energy-activated nonlinear form. The energy storage in the Maxwell branches has a quadratic form leading to a linear stress-strain response in the logarithmic strain space. On the numerical side, the algorithmic aspects suitable for the implicit finite element method are discussed in a Lagrangian setting. The model shows excellent agreement compared to experimental data obtained from the literature. Furthermore, the finite element simulations of a heart cycle carried out with the proposed model show significant deviations in the strain field relative to the elastic solution.
Subject Keywords
Human-Computer Interaction
,
Bioengineering
,
Biomedical Engineering
,
General Medicine
,
Computer Science Applications
URI
https://hdl.handle.net/11511/47830
Journal
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING
DOI
https://doi.org/10.1080/10255842.2014.881475
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A fully implicit finite element method for bidomain models of cardiac electrophysiology
Dal, Hüsnü; Göktepe, Serdar (Informa UK Limited, 2012-01-01)
This work introduces a novel, unconditionally stable and fully coupled finite element method for the bidomain system of equations of cardiac electrophysiology. The transmembrane potential phi(i) - phi(e) and the extracellular potential phi(e) are treated as independent variables. To this end, the respective reaction-diffusion equations are recast into weak forms via a conventional isoparametric Galerkin approach. The resultant nonlinear set of residual equations is consistently linearised. The method result...
An algorithm for constructing various kinds of nanojunctions using zig-zag and armchair nanotubes
Tasci, Emre; Erkoç, Şakir (American Scientific Publishers, 2007-04-01)
A method for generating various forms of junctions involving armchair and zig-zag nanotubes, firstly introduced by Zsoldos et al., is developed to cover all types of armchair and zig-zag nanotubes in a systematical way. This method can also be used to produce nanogears and toothed canals. The method is explained and flowcharts are included to aid in programming into a code.
An adaptive fully discontinuous Galerkin level set method for incompressible multiphase flows
KARAKUS, Ali; WARBURTON, Tim; AKSEL, MEHMET HALUK; Sert, Cüneyt (Emerald, 2018-01-01)
Purpose This study aims to focus on the development of a high-order discontinuous Galerkin method for the solution of unsteady, incompressible, multiphase flows with level set interface formulation.
A Kalman filter-based approach to reduce the effects of geometric errors and the measurement noise in the inverse ECG problem
Aydin, Umit; Serinağaoğlu Doğrusöz, Yeşim (Springer Science and Business Media LLC, 2011-09-01)
In this article, we aimed to reduce the effects of geometric errors and measurement noise on the inverse problem of Electrocardiography (ECG) solutions. We used the Kalman filter to solve the inverse problem in terms of epicardial potential distributions. The geometric errors were introduced into the problem via wrong determination of the size and location of the heart in simulations. An error model, which is called the enhanced error model (EEM), was modified to be used in inverse problem of ECG to compens...
A projection based variational multiscale method for a fluid–fluid interaction problem
Ağgül, Mustafa ; Eroğlu, Fatma Güler ; Kaya Merdan, Songül; Labovsky, Alexer E. (Elsevier BV, 2020-06-15)
The proposed method aims to approximate a solution of a fluid–fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere–ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air–sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the pr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. B. C. CANSIZ, H. Dal, and M. KALISKE, “An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment,”
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING
, pp. 1160–1172, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47830.