Stress distributions in elastic-plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria

2005-04-01
Analytical and numerical solutions for the elastic-plastic stress distribution in rotating variable thickness solid and annular disks are obtained under plane stress assumption. The thickness of the disk is assumed to vary radially in elliptic form which represents a wide range of continuously variable nonlinear cross-sectional profiles. Tresca's yield criterion and its associated flow rule are used to obtain analytical solutions for a linear hardening material. A computational model is developed to obtain solutions using the von Mises yield criterion, deformation theory of plasticity and a Swift-type hardening law. Both linear and nonlinear hardening materials are considered in solutions obtained by using von Mises criterion. The stresses, displacement and plastic strains are calculated for solid and annular disks rotating at different speeds and the results are presented in graphical forms.
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK

Suggestions

Fracture mechanical behaviour of visco-elastic materials: application to the so-called dwell-effect
NAESER, Bastian; KALISKE, Michael; Dal, Hüsnü; NETZKER, Christiane (Wiley, 2009-08-01)
The material force approach is an efficient, elegant, and accepted means to compute the J-integral as a fracture mechanical parameter for elastic and inelastic materials. With the formulation of a multiplicative split of the deformation gradient at hand, rate-dependent (visco-elastic) materials described for example by the physically based Bergstrom-Boyce model can be investigated. For these investigations, the so-called material volume forces have to be computed in order to separate the driving forces acti...
Analytical and numerical solutions to rotating orthotropic disk problems
Kaya, Yasemin; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2007)
Analytical and numerical models are developed to investigate the effect of orthotropy on the stress distribution in variable thickness solid and annular rotating disks. The plastic treatment is based on Hill’s quadratic yield criterion, total deformation theory, and Swift’s hardening law. The elastic-plastic stress distributions, residual stresses and radial displacement distributions are obtained after having analysed the cases of rotating solid disk, annular disk with rigid inclusion, annular disk subject...
Forced vibrations of functionally graded annular and circular plates by domain-boundary element method
Eshraghi, Iman; Dağ, Serkan (Wiley, 2020-08-01)
Axi-symmetric dynamic response of functionally graded circular and annular Mindlin plates with through-the-thickness variations of physical properties is investigated by a new domain-boundary element formulation. Three governing partial differential equations of motion of the inhomogeneous plate are converted to integral equations by utilizing the static fundamental solutions of the displacement components. These integral equations are then spatially discretized by dividing the entire domain into a number o...
Streamwise oscillations of a cylinder beneath a free surface: Free surface effects on vortex formation modes
Bozkaya, Canan; Mironova, L. A.; Gubanov, O. I. (Elsevier BV, 2011-06-15)
A computational study of a viscous incompressible two-fluid model with an oscillating cylinder is investigated at a Reynolds number of 200 and at a dimensionless displacement amplitude of A = 0.13 and for the dimensionless forcing cylinder oscillation frequency-to-natural vortex shedding frequency ratios, f/f(0) = 1.5, 2.5, 3.5. Specifically, two-dimensional flow past a circular cylinder subject to forced in-line oscillations beneath a free surface is considered. The method is based on a finite volume discr...
Exact and FDM solutions of 1D MHD flow between parallel electrically conducting and slipping plates
Arslan, Sinem; Tezer, Münevver (Springer Science and Business Media LLC, 2019-08-01)
In this study, the steady, laminar, and fully developed magnetohydrodynamic (MHD) flow is considered in a long channel along with the z-axis under an external magnetic field which is perpendicular to the channel axis. The fluid velocity u and the induced magnetic field b depend on the plane coordinates x and y on the cross-section of the channel. When the lateral channel walls are extended to infinity, the problem turns out to be MHD flow between two parallel plates (Hartmann flow). Now, the variations of u...
Citation Formats
A. N. Eraslan, “Stress distributions in elastic-plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria,” ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, pp. 252–266, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47877.