Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Moving contact problems involving a rigid punch and a functionally graded coating
Date
2020-05-01
Author
Balci, Mehmet N.
Dağ, Serkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
Frictional contact mechanics analysis for a rigid moving punch of an arbitrary profile and a functionally graded coating/homogeneous substrate system is carried out. The rigid punch slides over the coating at a constant subsonic speed. Smooth variation of the shear modulus of the graded coating is defined by an exponential function and the variation of the Poisson's ratio is assumed negligible. Coulomb's friction law is adopted. Hence, tangential force is proportional to the normal applied force through the coefficient of friction. An analytical method is developed utilizing the singular integral equation approach. Governing partial differential equations are derived in accordance with the theory of elastodynamics. The mixed boundary value problem is reduced to a singular integral equation of the second kind, which is solved numerically by an expansion-collocation technique. Presented results illustrate the effects of punch speed, coefficient of friction, material inhomogeneity and coating thickness on contact stress distributions and stress intensity factors. Comparisons indicate that the difference between elastodynamic and elastostatic solutions tends to be quite larger especially at higher punch speeds. It is shown that use of the elastodynamic theory provides more realistic results in contact problems involving a moving punch.
Subject Keywords
Modelling and Simulation
,
Applied Mathematics
URI
https://hdl.handle.net/11511/47955
Journal
APPLIED MATHEMATICAL MODELLING
DOI
https://doi.org/10.1016/j.apm.2020.01.004
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Fracture mechanical behaviour of visco-elastic materials: application to the so-called dwell-effect
NAESER, Bastian; KALISKE, Michael; Dal, Hüsnü; NETZKER, Christiane (Wiley, 2009-08-01)
The material force approach is an efficient, elegant, and accepted means to compute the J-integral as a fracture mechanical parameter for elastic and inelastic materials. With the formulation of a multiplicative split of the deformation gradient at hand, rate-dependent (visco-elastic) materials described for example by the physically based Bergstrom-Boyce model can be investigated. For these investigations, the so-called material volume forces have to be computed in order to separate the driving forces acti...
Computational modeling of passive myocardium
Göktepe, Serdar; Wong, Jonathan; Kuhl, Ellen (Wiley, 2011-01-01)
This work deals with the computational modeling of passive myocardial tissue within the framework ofmixed, non-linear finite element methods. We consider a recently proposed, convex, anisotropic hyperelastic model that accounts for the locally orthotropic micro-structure of cardiac muscle. A coordinate-free representation of anisotropy is incorporated through physically relevant invariants of the Cauchy-Green deformation tensors and structural tensors of the corresponding material symmetry group. This model...
Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch
BALCI, MEHMET NURULLAH; Dağ, Serkan (Elsevier BV, 2019-04-01)
This paper presents an analytical method developed to investigate the dynamic frictional contact mechanics between a functionally graded coating and a rigid moving cylindrical punch. Governing partial differential equations of elastodynamics are solved analytically by applying Galilean and Fourier transformations. Interface continuity and boundary conditions are written and contact problem is then reduced to a singular integral equation of the second kind. The singular integral equation is solved numericall...
Domain-Structured Chaos in a Hopfield Neural Network
Akhmet, Marat (World Scientific Pub Co Pte Lt, 2019-12-30)
In this paper, we provide a new method for constructing chaotic Hopfield neural networks. Our approach is based on structuring the domain to form a special set through the discrete evolution of the network state variables. In the chaotic regime, the formed set is invariant under the system governing the dynamics of the neural network. The approach can be viewed as an extension of the unimodality technique for one-dimensional map, thereby generating chaos from higher-dimensional systems. We show that the dis...
Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory
Miehe, Christian; Mendez Diez, Joel; Göktepe, Serdar; Schaenzel, Lisa Marie (Elsevier BV, 2011-06-15)
The paper outlines a constitutive model for finite thermo-visco-plastic behavior of amorphous glassy polymers and considers details of its numerical implementation. In contrast to existing kinematical approaches to finite plasticity of glassy polymers, the formulation applies a plastic metric theory based on an additive split of Lagrangian Hencky-type strains into elastic and plastic parts. The analogy between the proposed formulation in the logarithmic strain space and the geometrically linear theory of pl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. N. Balci and S. Dağ, “Moving contact problems involving a rigid punch and a functionally graded coating,”
APPLIED MATHEMATICAL MODELLING
, pp. 855–886, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47955.