Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Diffusion Equation-Based Finite Element Modeling of a Monumental Worship Space
Download
index.pdf
Date
2017-12-01
Author
Gul, Zuhre Su
Xiang, Ning
Çalışkan, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
0
downloads
Cite This
In this work, a diffusion equation model (DEM) is applied to a room acoustics case for in-depth sound field analysis. Background of the theory, the governing and boundary equations specifically applicable to this study are presented. A three-dimensional geometric model of a monumental worship space is composed. The DEM is solved over this model in a finite element framework to obtain sound energy densities. The sound field within the monument is numerically assessed; spatial sound energy distributions and flow vector analysis are conducted through the time-dependent DEM solutions.
Subject Keywords
Acoustics and Ultrasonics
,
Applied Mathematics
URI
https://hdl.handle.net/11511/48018
Journal
JOURNAL OF COMPUTATIONAL ACOUSTICS
DOI
https://doi.org/10.1142/s0218396x17500291
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Vibrations of open-section channels: A coupled flexural and torsional wave analysis
Yaman, Yavuz (Elsevier BV, 1997-07-03)
An exact analytical method is presented for the analysis of forced vibrations of uniform, open-section channels. The centroid and the shear center of the channel cross-sections considered do not coincide; hence the flexural and the torsional vibrations are coupled. In the context of this study, the type of any existing coupling is defined in terms of the independent motions which are coupled through mass and/or stiffness terms. Hence, if the flexural vibrations in one direction are coupled with the torsiona...
Prediction of ducted diaphragm noise using a stochastic approach with adapted temporal filters
Karban, Ugur; Schram, Christophe; Sovardi, Carlo; Polifke, Wolfgang (SAGE Publications, 2019-01-01)
The noise production by ducted single- and double-diaphragm configurations is simulated using a stochastic noise generation and radiation numerical method. The importance of modeling correctly the anisotropy and temporal de-correlation is discussed, based on numerical results obtained by large eddy simulation. A new temporal filter is proposed, designed to provide the targeted spectral decay of energy in an Eulerian reference frame. An anisotropy correction is implemented using a non-linear model. The acous...
Dynamic Speech Spectrum Representation and Tracking Variable Number of Vocal Tract Resonance Frequencies With Time-Varying Dirichlet Process Mixture Models
Özkan, Emre; Demirekler, Muebeccel (Institute of Electrical and Electronics Engineers (IEEE), 2009-11-01)
In this paper, we propose a new approach for dynamic speech spectrum representation and tracking vocal tract resonance (VTR) frequencies. The method involves representing the spectral density of the speech signals as a mixture of Gaussians with unknown number of components for which time-varying Dirichlet process mixture model (DPM) is utilized. In the resulting representation, the number of formants is allowed to vary in time. The paper first presents an analysis on the continuity of the formants in the sp...
Excitonic effects on the nonlinear optical properties of small quantum dots
KARABULUT, İBRAHİM; Safak, H.; Tomak, Mehmet (IOP Publishing, 2008-08-07)
The excitonic effects on the nonlinear optical properties of small quantum dots with a semiparabolic confining potential are studied under the density matrix formalism. First, within the framework of the strong confinement approximation, we present the excitonic states and then calculate the excitonic effects on the nonlinear optical properties, such as second harmonic generation, third harmonic generation, nonlinear absorption coefficient and refractive index changes. We find the explicit analytical expres...
Theoretical investigation of effects of flow oscillations on ultrasound Doppler velocity measurements
Koseli, Volkan; Uludağ, Yusuf (Elsevier BV, 2012-02-01)
Effects of flow oscillations on spectrum of Ultrasound Doppler Velocimetry (UDV) signals were investigated theoretically and numerically. A laminar pipe flow with a superimposed oscillating component was considered. Negative impact of oscillation on the ultrasound signal hence on the flow images was observed in the form of spreading of spectral ultrasound signal energy around mean component, leading to image artifacts. Both analytical and numerical results revealed the strong effect of a group of parameters...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. S. Gul, N. Xiang, and M. Çalışkan, “Diffusion Equation-Based Finite Element Modeling of a Monumental Worship Space,”
JOURNAL OF COMPUTATIONAL ACOUSTICS
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48018.