Use of computationally efficient method of moments in the optimization of printed antennas

Download
1999-04-01
Derivation of the closed-form Green's functions and analytical evaluation of the method of moments (MOM) matrix entries have improved the computational efficiency of the significantly in the analysis of printed geometries. With this background in mind, an extension of this efficient numerical technique is to incorporate an optimization algorithm and to assess its potential as a computer-aided design (CAD) tool. Therefore, we have employed the Gradient search and Genetic algorithms, in conjunction with the electromagnetic (EM) simulation technique, to a number of representative examples of interest.
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

Suggestions

Applications of hybrid discrete Fourier transform-moment method to the fast analysis of large rectangular dipole arrays printed on a thin grounded dielectric substrate
Chou, HT; Ko, HK; Aydın Çivi, Hatice Özlem; ERTÜRK, VAKUR BEHÇET (2002-08-05)
Recently a discrete Fourier transform-method of moments (DFT-MoM) scheme was developed for fast analysis of electrically large rectangular planar dipole arrays, which has been shown to be very efficient in terms of number reduction of unknown variables and computational complexity. The applications of this DFT-MoM to treat dipole arrays printed on a grounded dielectric substrate are examined in this Letter. Numerical results are presented to validate its efficiency and accuracy. (C) 2002 Wiley Periodicals, ...
Efficient Computation of Green's Functions for Multilayer Media in the Context of 5G Applications
Mittra, Raj; Özgün, Özlem; Li, Chao; Kuzuoğlu, Mustafa (2021-03-22)
This paper presents a novel method for effective computation of Sommerfeld integrals which arise in problems involving antennas or scatterers embedded in planar multilayered media. Sommerfeld integrals that need to be computed in the evaluation of spatial-domain Green's functions are often highly oscillatory and slowly decaying. For this reason, standard numerical integration methods are not efficient for such integrals, especially at millimeter waves. The main motivation of the proposed method is to comput...
Numerically efficient analysis of slot-lines in multilayer media using closed form Green's functions
Dural Ünver, Mevlüde Gülbin; Aksun, MI (1996-05-16)
A numerically efficient technique for the analysis of slot-line geometries in multilayer media is presented using closed-form Green's functions in the spatial domain employed in conjunction with the Method of Moments (MoM). The computed equivalent magnetic current distribution on the slot is used to determine the power radiated by the slot and the input impedance. In power calculations, the spatial domain Green's functions are approximated as a power series of radial distance, and the integrals involving th...
Analytical evaluation of the MoM matrix elements
Alatan, Lale; Mahadevan, K; Birand, MT (1996-04-01)
Derivation of the closed-form Green's functions has eliminated the computationally expensive evaluation of the Sommerfeld integrals to obtain the Green's functions in the spatial domain, Therefore, using the closed-form Green's functions in conjunction with the method of moments (MoM) has improved the computational efficiency of the technique significantly, Further improvement can be achieved on the calculation of the matrix elements involved in the MoM, usually double integrals for planar geometries, by el...
Derivation and analysis of near field tofar field transformation algorithm for spherical scanning
Korkmaz, Hülya; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2019)
This thesis focuses on the improvement of a far field transformation algorithm of spherical near field scanning by using different quadrature techniques for numerical integration process. In this thesis, spherical vector wave expansion of E field is studied and numerical calculation for expansion coefficients of E field is performed. In the scope of this study quadrature techniques like Gauss, Trapezoid and Simpsons are investigated and advantages and disadvantages of these techniques are discussed. A decis...
Citation Formats
L. Alatan and M. K. Leblebicioğlu, “Use of computationally efficient method of moments in the optimization of printed antennas,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, pp. 725–732, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48048.