Analytical evaluation of the MoM matrix elements

Download
1996-04-01
Alatan, Lale
Mahadevan, K
Birand, MT
Derivation of the closed-form Green's functions has eliminated the computationally expensive evaluation of the Sommerfeld integrals to obtain the Green's functions in the spatial domain, Therefore, using the closed-form Green's functions in conjunction with the method of moments (MoM) has improved the computational efficiency of the technique significantly, Further improvement can be achieved on the calculation of the matrix elements involved in the MoM, usually double integrals for planar geometries, by eliminating the numerical integration, The contribution of this paper is to present the analytical evaluation of the matrix elements when the closed-form Green's functions are used, and to demonstrate the amount of improvement in computation time.
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Suggestions

Optimization of the array geometry for direction finding
Özaydın, Seval; Koç, Seyit Sencer; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2003)
In this thesis, optimization of the geometry of non-uniform arrays for direction finding yielding unambiguous results is studied. A measure of similarity between the array response vectors is defined. In this measure, the effects of antenna array geometry, source placements and antenna gains are included as variable parameters. Then, assuming that the antenna gains are known and constant, constraints on the similarity function are developed and described to result in unambiguous configurations and maximum r...
Use of computationally efficient method of moments in the optimization of printed antennas
Alatan, Lale; Leblebicioğlu, Mehmet Kemal (1999-04-01)
Derivation of the closed-form Green's functions and analytical evaluation of the method of moments (MOM) matrix entries have improved the computational efficiency of the significantly in the analysis of printed geometries. With this background in mind, an extension of this efficient numerical technique is to incorporate an optimization algorithm and to assess its potential as a computer-aided design (CAD) tool. Therefore, we have employed the Gradient search and Genetic algorithms, in conjunction with the e...
Numerically efficient analysis of slot-lines in multilayer media using closed form Green's functions
Dural Ünver, Mevlüde Gülbin; Aksun, MI (1996-05-16)
A numerically efficient technique for the analysis of slot-line geometries in multilayer media is presented using closed-form Green's functions in the spatial domain employed in conjunction with the Method of Moments (MoM). The computed equivalent magnetic current distribution on the slot is used to determine the power radiated by the slot and the input impedance. In power calculations, the spatial domain Green's functions are approximated as a power series of radial distance, and the integrals involving th...
Investigation of tightly coupled arrays for wideband applications
Arda, Kaan; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2020-10)
This thesis aims to provide in depth research on tightly coupled dipole arrays to be used in ultrawideband apertures applications. First, operation principles of tightly coupled dipole arrays are investigated. Starting from the Wheeler’s current sheet aperture concept, some calculations on bandwidth and impedance concepts are conducted. B.A. Munk’s addition to the concept, use of capacitive elements between adjacent dipoles, are introduced. Array unit cell is modeled using equivalent circuit approach,...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
L. Alatan, K. Mahadevan, and M. Birand, “Analytical evaluation of the MoM matrix elements,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, pp. 519–525, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37757.