Prolate and oblate chiral liquid crystal spheroids

Sadati, Monirosadat
Martinez-Gonzalez, Jose A.
Zhou, Ye
Qazvini, Nader Taheri
Kurtenbach, Khia
Li, Xiao
Büküşoğlu, Emre
Zhang, Rui
Abbott, Nicholas L.
Pablo Hernandez-Ortiz, Juan
de Pablo, Juan J.
Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.


Dielectric matrix influence on the photoluminescence properties of silicon nanocrystals
Ferraioli, L.; Cazzanelli, M.; Daldosso, N.; Mulloni, V.; Bellutti, P.; Yerci, Selçuk; Turan, Raşit; Mikhaylov, A.n.; Tetelbaum, D.ı.; Pavesi, L. (null; 2006-12-01)
Photoluminescence properties of silicon nanocrystals embedded in five different oxide matrices are analyzed. Samples are silicon rich oxide and oxynitride produced by PECVD and ion implantation and crystalline and amorphous aluminum oxide implanted with silicon.
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
Surface-enhanced Raman scattering spectroscopy via gold nanostars
Nalbant Esentürk, Emren (Wiley, 2009-01-01)
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS) spectroscopy. Star-shaped gold (Au) NPs were prepared in aqueous solutions by the seed-mediated growth method and tested for Raman enhancement using 2-mercaptopyridine (2-MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman en...
Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain
Dede, Didem; Taghipour, Nima; Quliyeva, Ulviyya; Sak, Mustafa; Keleştemur, Yusuf; Gungor, Kivanc; Demir, Hilmi Volkan (2019-03-01)
Solution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe1-xTex/CdS core/multicrown hetero-nanoplatelets (NPLs), controlling th...
Citation Formats
M. Sadati et al., “Prolate and oblate chiral liquid crystal spheroids,” SCIENCE ADVANCES, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: