Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Inelastic Displacement Response of RC Systems with Cyclic Deterioration-An Energy Approach
Date
2012-01-01
Author
Erberik, Murat Altuğ
Sucuoğlu, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
72
views
0
downloads
Cite This
Inelastic displacements of reinforced concrete systems are investigated by employing an energy-based approach. A hysteresis model is developed that accounts for stiffness degradation, strength deterioration and pinching. The model is calibrated by using experimental data from literature. Inelastic displacement ratios are calculated under a specific set of ground motion records with long effective durations. The results reveal the importance of deteriorating behavior under long duration excitations, especially for short and medium period structures. The last part of the study is devoted to the introduction of a simple empirical relationship for estimating the inelastic displacement demands of degrading RC structural systems.
Subject Keywords
Inelastic displacements
,
Displacement coefficients
,
Stiffness and strength deterioration
,
Pinching
,
Energy-based hysteresis model
URI
https://hdl.handle.net/11511/48105
Journal
JOURNAL OF EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1080/13632469.2012.685210
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Peak ground velocity sensitive deformation demands and a rapid damage assessment approach
Akkar, S; Sucuoğlu, Haluk (2003-05-13)
The effect of peak ground velocity (PGV) on the maximum inelastic deformation demand of simple, non-degrading structural systems is studied. Ground motion data sets are assembled for pre-defined ranges of PGV and they are used to conduct nonlinear response history analysis of single-degree-of-freedom (SDOF) systems. The study is focused on short and intermediate periods of vibration (T) and strength reduction factor (R) is used to define the lateral capacity of the structure. As part of the study, a simple ...
Progressive failure analysis of composite shells
Olcay, Yasemin; Darendeliler, Haluk; Department of Mechanical Engineering (2012)
The objective of this thesis is to investigate the progressive failure behavior of laminated fiber reinforced composite shell structures under different loading conditions. The laminates are assumed to be orthotropic and the first order shear deformation theory is applied. Three-node layered flat-shell elements are used in the analysis. To verify the numerical results obtained, experimental and analytical results found in literature are compared with the outputs of the study, and the comparison is found to ...
Estimation of Length Limits for Integral Bridges Built on Clay
Dicleli, Murat (2004-11-01)
In this paper, the maximum length limits for integral bridges built on clay are determined as a function of the ability of steel H-piles supporting the abutments to sustain thermal-induced cyclic displacements and the flexural capacity of the abutment. First, H-pile sections that can accommodate large plastic deformations are determined considering their local buckling instability. Then, a low-cycle fatigue damage model is used to determine the maximum cyclic deformations that such piles can sustain. Next, ...
Comparison of the Overlapping Lattice and the Finite Element Approaches for the Prediction of the Collapse State of Concrete Gravity Dams
Soysal Albostan, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (2017-10-13)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. Erberik and H. Sucuoğlu, “Inelastic Displacement Response of RC Systems with Cyclic Deterioration-An Energy Approach,”
JOURNAL OF EARTHQUAKE ENGINEERING
, pp. 937–962, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48105.