Thin film microextraction: Towards faster and more sensitive microextraction

2019-04-01
Olcer, Yekta Arya
Tascon, Marcos
Eroglu, Ahmet E.
Boyacı, Ezel
Thin film microextraction (TFME) is an analytical tool that has been proven to be suitable for integrated sampling and sample preparation of a wide variety of routine and on-site applications. Compared to the traditional microextraction techniques, the most important advantage of TFME is its enhanced sensitivity due to the relatively larger extractive phase spread over a larger surface area. The technique, in this way, facilitates fast extraction kinetics and high extractive capacity. Moreover, TFME offers high versatility for device development over classical SPME technologies due to the plethora of available extractive phases, coating methods and geometry options. The goal of this review is to provide a comprehensive summary of the contemporary advances in this exciting field covering novel extractive phases, technological and methodological developments, and relevant cutting-edge applications. Finally, a critical discussion of the future trends on TFME is also presented.
TRAC-TRENDS IN ANALYTICAL CHEMISTRY

Suggestions

Immobilization studies utilizing solid supports for the determination of fructose by dansylaminophenyl boronic acid (DAPB acid) and chromate by diphenylcarbazide (DPC)
Bulut, Mukadder; Volkan, Mürvet; Department of Chemistry (2006)
Immobilization of fluorescent chemosensors and chromogenic reagents on solid supports for developing optical sensors result in improved analytical performance characteristics such as continuous read-out, increased sensitivity, lower reagent consumption and possibility of using the sensor in solvents where the free molecule displays low solubility. The aim of this study is to immobilize dansylaminophenyl boronic acid (DAPB acid) and diphenylcarbazide (DPC) into various solid supports for the determination of...
Optimization of ETV-ICP(TOF)MS and transient signal profiles for reducing isobaric interferences
Ertaş, Gülay (Royal Society of Chemistry (RSC), 2005-01-01)
One of the advantages of the ETV sample introduction is the ability to temporally separate analyte elements in complex mixtures by differences in their vaporization temperatures within the ETV for ICPMS. However, the broadening of the transient peaks in the transport tubing often obscures this temporal resolution. This study shows that decreasing the transport tubing diameter produces little broadening beyond that produced during aerosol production in the ETV. Maintaining such narrow peaks through the trans...
Use of a simple transient extension chamber with ETV-ICPMS: quantitative analysis and matrix effects
Ertaş, Gülay (Royal Society of Chemistry (RSC), 2003-01-01)
The transient extension (TEx) chamber was developed to provide a simple means of lengthening an electrothermal vaporizer (ETV) signal for the purpose of obtaining a full mass scan from a single ETV firing with inductively coupled plasma mass spectrometry (ICPMS) detection. The TEx chamber was used for quantitative analysis of natural water (NIST SRM 1640). Quantitative analysis was done for Co, Be, Pb, Sb and Cd. Detection limits for the five elements tested with the TEx chamber were in the 1-10 mug L-1 ran...
Melatonin induces opposite effects on order and dynamics of anionic DPPG model membranes
Sahin, Ipek; Severcan, Feride; Kazanci, Nadide (Elsevier BV, 2007-05-27)
The temperature and concentration induced effects of melatonin on anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar liposomes (MLVs) were investigated by using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The results show that melatonin does not perturb the phase transition profile, while a decrease in the main transition temperature (T-m) is noticed at high melatonin concentrations (15, 24 and 30 mol Low concentrations of melatonin (3, 6 and 9 mol ...
Thin-film microextraction coupled to LC-ESI-MS/MS for determination of quaternary ammonium compounds in water samples
Boyacı, Ezel; Pawliszyn, Janusz (Springer Science and Business Media LLC, 2014-01-01)
The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection o...
Citation Formats
Y. A. Olcer, M. Tascon, A. E. Eroglu, and E. Boyacı, “Thin film microextraction: Towards faster and more sensitive microextraction,” TRAC-TRENDS IN ANALYTICAL CHEMISTRY, pp. 93–101, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48426.