Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Using spilled over hydrogen in NH3 synthesis over supported Ru catalysts
Date
2016-09-01
Author
Üner, Deniz
ASLAN, MUSTAFA YASİN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
15
views
0
downloads
The role of spilled over hydrogen in ammonia synthesis reaction was monitored over Ru/SiO2, Ru/SBA15 and Ru/CNF using an in-situ DRIFTS cell reactor. Strongly bound hydrogen trapped on the metal and spilled over hydrogen trapped on the support due to a diffusion barrier remained on the surface after the overnight purge followed by hydrogen exposure over a reduced catalyst. When N-2 flow was introduced at room temperature, IR characteristic signals of NH3 were observed, indicating the formation of ammonia from hydrogen trapped on the surface. Total and weak hydrogen adsorption isotherms measured at different temperatures indicated that at low coverages spilled over hydrogen is trapped on the support in a kinetically metastable state. These results indicated the possibility of ammonia synthesis with the irreversibly bound hydrogen present on the support. A new hydrogen feeding strategy was proposed after a microkinetic model was used to estimate the rates in a plug flow reactor. An incremental hydrogen feeding strategy in the earlier phases of the reaction was proposed to eliminate hydrogen poisoning. The model predictions revealed that the alternative feeding strategy increased the rates by two orders of magnitude at the early stages of the reaction.
Subject Keywords
General Chemistry
,
Catalysis
URI
https://hdl.handle.net/11511/48432
Journal
CATALYSIS TODAY
DOI
https://doi.org/10.1016/j.cattod.2015.11.038
Collections
Department of Chemical Engineering, Article