Hide/Show Apps

Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride

Zahmakiran, Mehmet
Ayvali, Tugce
Akbayrak, Serdar
Caliskan, Salim
Celik, Derya
Özkar, Saim
Among the hydrogen storage materials, ammonia-borane and sodium borohydride appear to be promising candidates as they can release hydrogen on hydrolysis in aqueous solution under mild conditions. Here, we report the development of a cost-effective and highly active nickel(0) nanoparticles catalyst for the hydrolysis of ammonia-borane and sodium borohydride. Nickel(0) nanoparticles confined in zeolite framework were prepared by using our previously established procedure and characterized by ICP-OES, XRD, TEM, HR-TEM, SEM, EDX, XPS, Raman spectroscopy and N(2) adsorption-desorption technique. All the results show that nickel(0) nanoparticles are formed within the framework of zeolite-Y. Nickel(0) nanoparticles confined in zeolite framework are highly active catalyst in the hydrolytic dehydrogenations of sodium borohydride and ammonia-borane. This catalyst is isolable, bottleable, redispersible and reusable. The report also includes the detailed kinetic study of the catalytic hydrolysis of both substrates, ammonia-borane and sodium borohydride depending on the catalyst concentration, substrate concentration, and temperature.