Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride

2011-07-19
Zahmakiran, Mehmet
Ayvali, Tugce
Akbayrak, Serdar
Caliskan, Salim
Celik, Derya
Özkar, Saim
Among the hydrogen storage materials, ammonia-borane and sodium borohydride appear to be promising candidates as they can release hydrogen on hydrolysis in aqueous solution under mild conditions. Here, we report the development of a cost-effective and highly active nickel(0) nanoparticles catalyst for the hydrolysis of ammonia-borane and sodium borohydride. Nickel(0) nanoparticles confined in zeolite framework were prepared by using our previously established procedure and characterized by ICP-OES, XRD, TEM, HR-TEM, SEM, EDX, XPS, Raman spectroscopy and N(2) adsorption-desorption technique. All the results show that nickel(0) nanoparticles are formed within the framework of zeolite-Y. Nickel(0) nanoparticles confined in zeolite framework are highly active catalyst in the hydrolytic dehydrogenations of sodium borohydride and ammonia-borane. This catalyst is isolable, bottleable, redispersible and reusable. The report also includes the detailed kinetic study of the catalytic hydrolysis of both substrates, ammonia-borane and sodium borohydride depending on the catalyst concentration, substrate concentration, and temperature.

Citation Formats
M. Zahmakiran, T. Ayvali, S. Akbayrak, S. Caliskan, D. Celik, and S. Özkar, “Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride,” CATALYSIS TODAY, vol. 170, no. 1, pp. 76–84, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63002.