Capacity of Zero-Outage Scheme Under Imprecise Channel State Information

The capacity of zero-outage scheme with imprecise channel state information at the transmitter side (CSIT) for frequency flat, single-input multiple-output (SIMO) channels is examined. It is shown that when CSIT is not precise, the receiver signal-to-noise-ratio fluctuates and the scheme suffers from communication outages. Exact analytical expressions characterizing the outage capacity, the additional power required to compensate the effect of noisy CSIT are given and the impact of noisy CSIT on the ergodic capacity is examined.


Transmission strategies and resource allocation for fading broadcast relay channels
Isikman, Arif Onder; Yüksel Turgut, Ayşe Melda (2015-01-01)
In this paper the broadcast relay channel, where the source communicates with multiple destinations with the help of a single relay is studied. Five different transmission protocols, direct transmission, multihop (MH), multihop with link combination (MHLC), path selection (PS) and path selection with link combination (PSLC) are investigated. In MH and MHLC, the relay decodes the source message and assists both destinations. In PS and PSLC, the relay can perform partial decoding and has the option to help on...
Design and implementation of low phase noise phase locked loop based local oscillator
Bölücek, Muhsin Alperen; Yıldırım, Nevzat; Department of Electrical and Electronics Engineering (2009)
In this thesis, a low phase noise local oscillator operating at 2210 MHz is designed and implemented to be used in X-Band transmitter of a LEO satellite. Designed local oscillator is a PLL (Phase Locked Loop) based frequency synthesizer which is implemented using discrete commercial components including ultra low noise voltage controlled oscillator and high resolution, low noise fractional-N synthesizer. Operational settings of the synthesizer are done using three wire serial interface of a microcontroller....
Blind Channel Estimation Based on the Lloyd-Max Algorithm in Narrowband Fading Channels and Partial-Band Jamming
Dizdar, Onur; Yılmaz, Ali Özgür (2012-07-01)
In wireless communications, knowledge of the channel coefficients is required for coherent demodulation. In this work, a blind channel estimation method based on the Lloyd-Max algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation points for the received signal using the Lloyd-Max algorithm. The algorithm is investigated for frequency hopping systems with small hop durations and operating under partial-band jamming for both detecting the jammer and estimating the cha...
Frequency tunable microstrip patch antenna using RF MEMS technology
Erdıl, Emre; Topallı, Kagan; Unlu, Mehmet; Aydın Çivi, Hatice Özlem; Akın, Tayfun (2007-04-01)
A novel reconfigurable microstrip patch antenna is presented that is monolithically integrated with RF microelectromechanical systems (MEMS) capacitors for tuning the resonant frequency. Reconfigurability of the operating frequency of the microstrip patch antenna is achieved by loading it with a coplanar waveguide (CPW) stub on which variable MEMS capacitors are placed periodically. MEMS capacitors are implemented with surface micromachining technology, where a 1-mu m thick aluminum structural layer is plac...
Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback
Sahai, Achaleshwar; Aggarwal, Vaneet; Yüksel Turgut, Ayşe Melda; Sabharwal, Ashutosh (2010-01-01)
In a two-user interference channel, there are four possible feedback paths - two from each receiver to the transmitters. This leads to 16 possible models of feedback. In this paper, we derive the sum capacity of two user deterministic interference channel for all sixteen cases. We find that whenever any of the direct link feedback from a receiver to its own transmitter is present, the sum-capacity is the same as when all four feedback links are present. Further when no direct link feedback is present, the s...
Citation Formats
Ç. Candan, “Capacity of Zero-Outage Scheme Under Imprecise Channel State Information,” IEEE COMMUNICATIONS LETTERS, pp. 127–130, 2013, Accessed: 00, 2020. [Online]. Available: