Design and implementation of low phase noise phase locked loop based local oscillator

Download
2009
Bölücek, Muhsin Alperen
In this thesis, a low phase noise local oscillator operating at 2210 MHz is designed and implemented to be used in X-Band transmitter of a LEO satellite. Designed local oscillator is a PLL (Phase Locked Loop) based frequency synthesizer which is implemented using discrete commercial components including ultra low noise voltage controlled oscillator and high resolution, low noise fractional-N synthesizer. Operational settings of the synthesizer are done using three wire serial interface of a microcontroller. Although there are some imperfections in the implementation, phase noise of the prototype system is pretty good which is measured as -123.2 dBc/Hz at 100 kHz offset and less than -141.3 dBc/Hz at 1 MHz offset. Made up of discrete components, the VCO used in the designed local oscillator is not integrable to frequency synthesizer which is implemented in CMOS technology. Considering technological progress, integrabilitiy of system components becomes important for designing single chip complete systems like transmitters, receivers or transceivers. Therefore considering a potential single chip transceiver production, also a CMOS voltage controlled oscillator is designed using standard TSMC 0.18um technology operating in between 2.05 GHz and 2.35 GHz . Since low phase noise is the main concern, phase noise models and phase noise reduction techniques that are derived from the models are studied. These techniques are applied to the VCO core to see the effects. Design is finalized by applying some of those techniques which are found to be noticeably effective to the core design. Finalized core operates from 2.15 GHz to 2.25 GHz and phase noise is simulated as -107.265 dBc/Hz at 100 kHz offset and -131.167 dBc/Hz at 1 MHz offset. Also oscillator has figure of merit of -185.4 at 100 kHz offset. These values show that designed core is considerably good when compared to similar designs.

Suggestions

Design and realization of broadband instantaneous frequency discriminator
Pamuk, Gökhan; Yıldırım, Nevzat; Department of Electrical and Electronics Engineering (2010)
n this thesis, RF sections of a multi tier instantaneous frequency measurement (IFM) receiver which can operate in 2 – 18 GHz frequency band is designed, simulated and partially realized. The designed structure uses one coarse tier, three medium tiers and one fine tier for frequency discrimination. A novel reflective phase shifting technique is developed which enables the design of very wideband phase shifters using stepped cascaded transmission lines. Compared to the classical phase shifters using coupled ...
Analysis of conventional low voltage power line communication methods for automatic meter reading and the classification and experimental verification of noise types for low voltage power line communication network
Danışman, Batuhan; Sevaioğlu, Osman; Department of Electrical and Electronics Engineering (2009)
In this thesis, the conventional low voltage power line communication methods is investigated in the axis of automated meter reading applications and the classification and experimental verification of common noise types for low voltage power line communication network. The investigated system provides the real time transmission of electricity consumption data recorded by electricity meters, initially to a local computer via a low voltage line through a low speed PLC (Power Line Carrier) environment and sub...
Design of dual polarized wideband microstrip antennas
Yıldırım, Meltem; Alatan, Lale; Department of Electrical and Electronics Engineering (2010)
In this thesis, a wideband dual polarized microstrip antenna is designed, manufactured and measured. Slot coupled patch antenna structure is considered in order to achieve the wideband characteristic. Although rectangular shaped slot coupled patch antennas are widely used in most of the applications, their utilization in dual polarized antenna structures is not feasible due to space limitations regarding the positioning of two separate coupling slots for each polarization. For a rectangular slot, the parame...
Milimeterwave FMCW radar design
İçöz, Dilşad; Hızal, Altunkan; Department of Electrical and Electronics Engineering (2009)
In traffic radar system, Frequency Modulated Continuous Wave (FMCW) will be used since these radars are preferred in short distance and high range resolution systems. The system to be constructed is not only a system operating with Doppler principle and detection of speed; on the contrary a functional radar is planned to be produced. In various traffic radars in use, Doppler shift constituted by the targets causing high reflection within detection field is measured and the measured speed corresponding to th...
A current source converter based statcom for reactive power compensation at low voltage
Biçer, Nazan; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2010)
This research work is devoted to the analysis, design and development of the Current-Source Converter (CSC) based distribution-type Static Synchronous Compensator (D-STATCOM) for low-voltage applications in reactive-power control in order to achieve i) faster transient response in reactive-power control, ii) lower current harmonic distortion, iii) lower power losses and iv) minimum storage elements in comparison with conventional solutions. The developed CSC-D-STATCOM includes a low-pass input filter and a ...
Citation Formats
M. A. Bölücek, “Design and implementation of low phase noise phase locked loop based local oscillator,” M.S. - Master of Science, Middle East Technical University, 2009.