Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new integrable generalization of the Korteweg-de Vries equation
Download
index.pdf
Date
2008-07-01
Author
Karasu-Kalkanli, Ayse
Karasu, Atalay
Sakovich, Anton
Sakovich, Sergei
TURHAN, REFİK
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
296
views
0
downloads
Cite This
A new integrable sixth-order nonlinear wave equation is discovered by means of the Painleve analysis, which is equivalent to the Korteweg-de Vries equation with a source. A Lax representation and an auto-Backlund transformation are found for the new equation, and its traveling wave solutions and generalized symmetries are studied. (C) 2008 American Institute of Physics.
Subject Keywords
Mathematical Physics
,
Statistical and Nonlinear Physics
URI
https://hdl.handle.net/11511/48586
Journal
JOURNAL OF MATHEMATICAL PHYSICS
DOI
https://doi.org/10.1063/1.2953474
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication
Kondo, Satoshi; Watari, Taizan (Springer Science and Business Media LLC, 2019-04-01)
It is known that the L-function of an elliptic curve defined over Q is given by the Mellin transform of a modular form of weight 2. Does that modular form have anything to do with string theory? In this article, we address a question along this line for elliptic curves that have complex multiplication defined over number fields. So long as we use diagonal rational N=(2,2) superconformal field theories for the string-theory realizations of the elliptic curves, the weight-2 modular form turns out to be the Bo...
Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics
Naicker, V; Andriopoulos, K; Leach, PGL (Informa UK Limited, 2005-05-01)
We determine the solutions of a nonlinear Hamilton-Jacobi-Bellman equation which arises in the modelling of mean-variance hedging subject to a terminal condition. Firstly we establish those forms of the equation which admit the maximal number of Lie point symmetries and then examine each in turn. We show that the Lie method is only suitable for an equation of maximal symmetry. We indicate the applicability of the method to cases in which the parametric function depends also upon the time.
The Lie algebra sl(2,R) and so-called Kepler-Ermakov systems
Leach, PGL; Karasu, Emine Ayşe (Informa UK Limited, 2004-05-01)
A recent paper by Karasu (Kalkanli) and Yildirim (Journal of Nonlinear Mathematical Physics 9 (2002) 475-482) presented a study of the Kepler-Ermakov system in the context of determining the form of an arbitrary function in the system which was compatible with the presence of the sl(2, R) algebra characteristic of Ermakov systems and the existence of a Lagrangian for a subset of the systems. We supplement that analysis by correcting some results.
A Monte Carlo procedure for the determination of the relaxation time constant of spin systems
Kokten, H; Yalabik, M C (IOP Publishing, 1990-10-21)
A new Monte Carlo method for the determination of relaxation time constants of classical spin systems is presented. The method is applied to a dynamical finite-size scaling calculatio
An algebraic method for the analytical solutions of the Klein-Gordon equation for any angular momentum for some diatomic potentials
Akçay, Hüseyin; Sever, Ramazan (IOP Publishing, 2014-01-01)
Analytical solutions of the Klein-Gordon equation are obtained by reducing the radial part of the wave equation to a standard form of a second-order differential equation. Differential equations of this standard form are solvable in terms of hypergeometric functions and we give an algebraic formulation for the bound state wave functions and for the energy eigenvalues. This formulation is applied for the solutions of the Klein-Gordon equation with some diatomic potentials.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, and R. TURHAN, “A new integrable generalization of the Korteweg-de Vries equation,”
JOURNAL OF MATHEMATICAL PHYSICS
, pp. 0–0, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48586.