String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication

Download
2019-04-01
Kondo, Satoshi
Watari, Taizan
It is known that the L-function of an elliptic curve defined over Q is given by the Mellin transform of a modular form of weight 2. Does that modular form have anything to do with string theory? In this article, we address a question along this line for elliptic curves that have complex multiplication defined over number fields. So long as we use diagonal rational N=(2,2) superconformal field theories for the string-theory realizations of the elliptic curves, the weight-2 modular form turns out to be the Boltzmann-weighted (qL0-c/24-weighted) sum of U(1) charges with FeiF insertion computed in the Ramond sector.
COMMUNICATIONS IN MATHEMATICAL PHYSICS

Suggestions

SYMMETRIC SPACE PROPERTY AND AN INVERSE SCATTERING FORMULATION OF THE SAS EINSTEIN-MAXWELL FIELD-EQUATIONS
ERIS, A; GURSES, M; Karasu, Atalay (AIP Publishing, 1984-01-01)
We formulate stationary axially symmetric (SAS) Einstein–Maxwell fields in the framework of harmonic mappings of Riemannian manifolds and show that the configuration space of the fields is a symmetric space. This result enables us to embed the configuration space into an eight‐dimensional flat manifold and formulate SAS Einstein–Maxwell fields as a σ‐model. We then give, in a coordinate free way, a Belinskii–Zakharov type of an inverse scattering transform technique for the field equations supplemented by a...
A new integrable generalization of the Korteweg-de Vries equation
Karasu-Kalkanli, Ayse; Karasu, Atalay; Sakovich, Anton; Sakovich, Sergei; TURHAN, REFİK (AIP Publishing, 2008-07-01)
A new integrable sixth-order nonlinear wave equation is discovered by means of the Painleve analysis, which is equivalent to the Korteweg-de Vries equation with a source. A Lax representation and an auto-Backlund transformation are found for the new equation, and its traveling wave solutions and generalized symmetries are studied. (C) 2008 American Institute of Physics.
Exact solutions for vibrational levels of the Morse potential
Taşeli, Hasan (IOP Publishing, 1998-01-16)
The vibrational levels of diatomic molecules via Morse potentials are studied by means of the system confined in a spherical box of radius l, II is shown that there exists a critical radius l(cr),, at which the spectrum of the usual unbounded system can be calculated to any desired accuracy. The results are compared with those of Morse's classical solution which is based on the assumption that the domain of the internuclear distance r includes the unphysical region (-infinity, 0). By determining numerically...
Hydrodynamic type integrable equations on a segment and a half-line
Guerses, Metin; Habibullin, Ismagil; Zheltukhın, Kostyantyn (AIP Publishing, 2008-10-01)
The concept of integrable boundary conditions is applied to hydrodynamic type systems. Examples of such boundary conditions for dispersionless Toda systems are obtained. The close relation of integrable boundary conditions with integrable reductions in multifield systems is observed. The problem of consistency of boundary conditions with the Hamiltonian formulation is discussed. Examples of Hamiltonian integrable hydrodynamic type systems on a segment and a semiline are presented. (C) 2008 American Institut...
Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics
Naicker, V; Andriopoulos, K; Leach, PGL (Informa UK Limited, 2005-05-01)
We determine the solutions of a nonlinear Hamilton-Jacobi-Bellman equation which arises in the modelling of mean-variance hedging subject to a terminal condition. Firstly we establish those forms of the equation which admit the maximal number of Lie point symmetries and then examine each in turn. We show that the Lie method is only suitable for an equation of maximal symmetry. We indicate the applicability of the method to cases in which the parametric function depends also upon the time.
Citation Formats
S. Kondo and T. Watari, “String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication,” COMMUNICATIONS IN MATHEMATICAL PHYSICS, pp. 89–126, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66167.