Supercritical carbon dioxide extraction of hazelnut oil

2005-07-01
Ozkal, SG
Salgin, U
Yener, Meryem Esra
Solubility of hazelnut oil in supercritical carbon dioxide (SC-CO2) was determined at 15-60MPa, and 40-60 degrees C. The crossover pressure of hazelnut oil was between 15 and 30MPa. The solubility increased with pressure, but increased with temperature above the crossover pressure. Hazelnut particles (1-2 mm) were extracted at 30-60MPa, and 40-60 degrees C with SC-CO2 flow rate of 2 ml/min. Extraction occurred in two periods. The released oil on the surface of particles was extracted in the fast extraction period, and 39% of the initial oil was recovered at each condition. However, the duration of the fast extraction period decreased with increased pressure and temperature. The unreleased oil in the intact cells was extracted in the slow extraction period. The maximum recovery was 59% at 60MPa and 60 degrees C, for 180 min of extraction. The fluid phase and solid phase mass transfer coefficients increased with increased pressure and temperature.
JOURNAL OF FOOD ENGINEERING

Suggestions

Supercritical carbon dioxide extraction of flaxseed oil: Effect of extraction parameters and mass transfer modeling
ÖZKAL, SAMİ GÖKHAN; Yener, Meryem Esra (2016-06-01)
Supercritical carbon dioxide (SC-CO2) extraction of flaxseed oil was performed and effects of process parameters including particle size (mean particle diameter <0.85-0.92 mm), solvent flow rate (2-4 g/min), pressure (40-60 MPa) and temperature (50-70 degrees C) were investigated. The broken and intact cells (BIC) model was used for mass transfer modeling of the extraction of flaxseed oil with SC-CO2 successfully. Extraction of flaxseed oil was divided into two periods as first (fast) and second (slow) extr...
Response surfaces of apricot kernel oil yield in supercritical carbon dioxide
Ozkal, SG; Yener, Meryem Esra; Bayindirli, L (2005-01-01)
Response surface methodology was used to determine the effects of solvent flow rate (2, 3 and 4 g/min), pressure (30, 37.5 and 45 MPa), temperature (40, 50 and 60 degrees C), and co-solvent concentration (0, 1.5 and 3 wt% ethanol) on oil yield of apricot (Prunus armeniaca L.) kernel oil in supercritical carbon dioxide (SC-CO2). All the parameters had significant effects on oil yield as well as the interactions between solvent flow rate and pressure, and between pressure and temperature. Oil yield increased ...
Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide
Ozkal, SG; Yener, Meryem Esra; Bayindirli, L (2005-09-01)
Effects of process parameters on extraction of apricot (Prunus armeniaca L.) kernel oil with supercritical carbon dioxide (SC-CO2) were investigated. The parameters included particle size (mean particle diameter < 0.425-1.5 mm), solvent flow rate (1-5 g/min), pressure (300-600 bar), temperature (40-70 degrees C) and co-solvent concentration (up to 3.0 wt.% ethanol). The model of broken and intact cells represented the apricot kernel oil extraction well. Grinding was necessary to release the oil from intact ...
Supercritical carbon dioxide extraction of apricot kernel oil
Özkal, Sami Gökhan; Yener, Meryem Esra; Department of Food Engineering (2004)
The purpose of this research was to determine the solubility of apricot (Prunus armeniaca L.) oil in supercritical carbon dioxide (SC-CO2), effects of parameters (particle size, solvent flow rate, pressure, temperature and co-solvent (ethanol) concentration) on extraction yield and to investigate the possibility of fractionation. Solubility, increased with pressure and increased with temperature above the crossover pressure, which was found between 200 and 300 bar, and decreased with temperature below the c...
Continuous supercritical carbon dioxide processing of palm oil
Ooi, CK; Bhaskar, A; Yener, Meryem Esra; Tuan, DQ; Hsu, J; Rizvi, SSH (1996-02-01)
Crude palm oil was processed by continuous supercritical carbon dioxide. The process reduces the contents of free fatty acids, monoglycerides and diglycerides, certain triglycerides, and some carotenes. The refined palm oil from the process has less than 0.1% free fatty acids, higher carotene content, and low diglycerides. Solubility of palm oil in supercritical carbon dioxide increased with pressure. A co-solvent improves the refining process of palm oil.
Citation Formats
S. Ozkal, U. Salgin, and M. E. Yener, “Supercritical carbon dioxide extraction of hazelnut oil,” JOURNAL OF FOOD ENGINEERING, pp. 217–223, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48651.