Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Micromechanical Modeling of Inter-Granular Localization, Damage and Fracture
Download
1-s2.0-S245232161830297X-main.pdf
Date
2018-08-31
Author
Yalçınkaya, Tuncay
Firat, Ali Osman
Tandogan, Izzet Tarik
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
136
views
123
downloads
Cite This
The recent developments in the production of miniaturized devices increases the demand on micro-components where the thickness ranges from tens to hundreds of microns. Various challenges, such as size effect and stress concentrations at the grain boundaries, arise due to the deformation heterogeneity observed at grain scale. Various metallic alloys, e.g. aluminum, exhibit substantial localization and stress concentration at the grain boundaries. In this regard, inter-granular damage evolution, crack initiation and propagation becomes an important failure mechanism at this length scale. Crystal plasticity approach captures intrinsically the heterogeneity developing due to grain orientation mismatch. However, the commonly used local versions do not possess a specific GB model and leads to jumps at the boundaries. Therefore, a more physical treatment of grain boundaries is needed. For this purpose, in this work, the Gurtin GB model (Gurtin (2008)) is incorporated into a strain gradient crystal plasticity framework (Yalcinkaya et al. (2011), Yalcinkaya et al. (2012), Yalcinkaya (2017)), where the intensity of the localization and stress concentration could be modelled considering the effect of grain boundary orientation, the mismatch and the strength of the GB. A zero thickness 12-node interface element for the integration of the grain boundary contribution and a 10-node coupled finite element for the bulk response are developed and implemented in Abaqus software as user element subroutines. 3D grain microstructure is created through Voronoi tessellation and the interface elements are automatically inserted between grains. After obtaining the localization, the mechanical behavior of the GB is modelled through incorporation of a potential based cohesive zone model (see Park et al. (2009), Cerrone et al. (2014)). The numerical examples present the performance of the developed tool for the intrinsic localization, crack initiation and propagation in micron-sized specimens. (C) 2018 The Authors. Published by Elsevier B.V.
Subject Keywords
Strain Gradient Crystal Plasticity
,
Cohesive zone modeling
,
Grain Boundary Modeling
,
Inter granular Fracture
URI
https://hdl.handle.net/11511/48724
DOI
https://doi.org/10.1016/j.prostr.2018.12.064
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Micromechanical modeling of intrinsic and specimen size effects in microforming
Yalçınkaya, Tuncay; Simonovski, I (2018-09-01)
Size effect is a crucial phenomenon in the microforming processes of metallic alloys involving only limited amount of grains. At this scale intrinsic size effect arises due to the size of the grains and the specimen/statistical size effect occurs due to the number of grains where the properties of individual grains become decisive on the mechanical behavior of the material. This paper deals with the micromechanical modeling of the size dependent plastic response of polycrystalline metallic materials at micr...
Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition
KARAMAT, SHUMAİLA; Celik, K.; Zaman, S. Shah; Oral, Ahmet (Elsevier BV, 2018-06-01)
High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment...
Micromechanical Modelling of Size Effects in Microforming
Yalçınkaya, Tuncay; SIMONOVSKI, IGOR; ÖZDEMİR, İZZET (2017-09-01)
This paper deals with the micromechanical modelling of the size dependent mechanical response of polycrystalline metallic materials at micron scale through a strain gradient crystal plasticity framework. The model is implemented into a Finite Element software as a coupled implicit user element subroutine where the plastic slip and displacement fields are taken as global variables. Uniaxial tensile tests are conducted for microstructures having different number of grains with random orientations in plane str...
INVESTIGATION OF DAMAGE IN GFRP TAPERED COMPOSITE LAMINATES
Hosseinpour Dashatan, Saeid; Arıkan, Mehmet Ali Sahir; Parnas, Kemal Levend; Department of Mechanical Engineering (2021-8-13)
In some applications of composite laminates, thickness variation is necessary to fulfill specific design requirements. One way of accomplishing the intentional thickness variation in composite structures is terminating some plies within a layup. Introducing ply drop-offs causes geometrical and material discontinuities, which lead to high localized stresses around drop-off locations. Despite all the progress made in damage analyses of tapered composite laminates, estimating their load-carrying capacity and s...
An investigation on dynamic contact parameters in machining center spindle tool assemblies
Özşahin, Orkun; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2008)
In machining centers, with the increasing trends in high precision machining, chatter has become an important problem which results in poor surface finish and low material removal rate. Chatter can be avoided with stability diagrams which provide the stable regions in the machining process for the depth of cut and spindle speed combinations. In order to obtain stability diagrams, tool point frequency response function (FRF) of the system should be obtained. Throughout this study, contact parameters which ar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Yalçınkaya, A. O. Firat, and I. T. Tandogan, “Micromechanical Modeling of Inter-Granular Localization, Damage and Fracture,” 2018, vol. 13, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48724.