Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Calculation of the T-X Phase Diagrams for Binary Mixtures of Cholestanyl Myristate-Cholesteryl Myristate and Cholestanyl Myristate-Cholesteryl Oleate
Date
2009-01-01
Author
Yurtseven, Hasan Hamit
Sen, Sema
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
T-X phase diagrams of binary mixtures of cholestanyl myristate (CnM)-cholesteryl myristate (CrM) and cholestanyl myristate (CnM)-cholesteryl oleate (CO) are calculated using the mean field theory. We expand the free energies for the phases of cholesteric, smectic, and solid solutions in terms of the order parameters for these binary mixtures (X is the concentration of CrM for CnM-CrM and the concentration of CnM for CnM-CO). From this expansion, we obtain the phase line equations for the transitions among the isotropic liquid, cholesteric, smectic, and solid solutions for both binary mixtures. Taking into account the temperature and concentration dependences of the coefficients in the free energy expansion, we fit our phase line equations to the experimentally measured T-X phase diagrams for these two binary mixtures. Our calculated phase lines coincide with the measured T-X phase diagrams, and the critical behavior of the thermodynamic quantities, including the order parameter, the specific heat, and the susceptibility, can be predicted from the mean field expansions.
Subject Keywords
General Biochemistry, Genetics and Molecular Biology
,
History and Philosophy of Science
URI
https://hdl.handle.net/11511/48729
Journal
INTERDISCIPLINARY TRANSPORT PHENOMENA: FLUID, THERMAL, BIOLOGICAL, MATERIALS, AND SPACE SCIENCES
DOI
https://doi.org/10.1111/j.1749-6632.2008.04326.x
Collections
Department of Physics, Article