Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Characterization of one-step deposited Cu2ZnSnS4 thin films derived from a single crystalline powder
Date
2019-12-01
Author
Peksu, Elif
Terlemezoğlu, Makbule
Parlak, Mehmet
Karaağaç, Hakan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
In this paper, Cu-deficient and Zn-rich Cu2ZnSnS4 (CZTS) single crystals were successfully grown by Bridgman technique. Following the investigation of structural and photo-electrical properties of the grown CZTS crystal, the powder extracted from it was evaporated through electron-beam technique for the fabrication of CZTS thin films by one-step deposition. Compositional analysis revealed that CZTS thin films were obtained with a composition stoichiometry very close to that measured for the crystal powder. Detailed XRD and Raman analyses have shown that the as-grown CZTS films have an amorphous matrix and then transform into a polycrystalline form with a monophase kesterite phase having (112) oriented plane direction following the post-annealing process at 500 degrees C. The optical band gap was found to be 1.50 eV for the CZTS film annealed 500 degrees C. The conducted photo-electrical measurements revealed that CZTS thin films have good sensitivity to the visible light, which is essential for an absorber layer in the solar cell device structure. The room temperature values of conductivity, mobility and hole carrier concentration of the films annealed at 500 degrees C were determined as similar to 5.1 x 10(-4) (Omega cm)(-1), 1.22 cm(2)/V s and 2.6 x 10(15) cm(-3), respectively.
Subject Keywords
Renewable Energy, Sustainability and the Environment
URI
https://hdl.handle.net/11511/48778
Journal
RENEWABLE ENERGY
DOI
https://doi.org/10.1016/j.renene.2019.05.076
Collections
Department of Physics, Article