Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells

2013-09-01
Sankir, Nurdan D.
Aydin, Erkan
Unver, Hulya
Uluer, Ezgi
Parlak, Mehmet
In this study, highly (1 1 2) oriented crystalline copper indium disulfide (CuInS2) thin films with high mobility have been deposited via ultrasonic spray pyrolysis. Structural and electrical properties of CuInS2 thin films were examined to utilize them in solar cell applications. Various amounts of precursor solution ranging from 0.25 to 2.02 ml/cm(2) were used to form CuInS2 thin films onto the soda lime glass substrates. Scanning electron microscopy (SEM) analysis revealed that all sprayed films were pin-hole and crack free. Atomic percent ratios of the Cu/In and S/In were very close to the targeted stoichiometric ratios of 1/1 and 2/1, respectively. X-ray diffraction (XRD) studies revealed that all the deposited films were polycrystalline and exhibiting the chalcopyrite structure. Optical band gap energy of the films were calculated as 2.85 eV and decreased to 1.40 eV by increasing the solution loading. Hopping mechanism could be considered as the dominant conduction mechanism in the studied temperature range. Carrier concentrations in CuInS2 films were ranging between 10(15) and 10(17) cm(-3). Mobility and the carrier concentration of the CuInS2 thin films deposited from 1.52 ml/cm(2) solution loading were 40.1 cm(2)/V s and 1.69 x 10(17), respectively. At last but not least, the amount of solution used in this study to form CuInS2 thin films was one of the lowest values reported in the literature.

Suggestions

Silver nanowire networks as transparent top electrodes for silicon solar cells
AURANG, Pantea; Doğanay, Doğa; Bek, Alpan; Turan, Raşit; Ünalan, Hüsnü Emrah (Elsevier BV, 2017-01-01)
Losses caused by the metal top contacts still remain as an issue in crystalline silicon (Si) solar cells. One approach to eliminate shading losses is to utilise transparent nanostructure networks synthesised through rapid and low cost processes. In this work, the potential of highly conductive silver nanowire (Ag NW) networks as transparent top electrodes for the elimination of metallisation process in Si solar cells was investigated. Ag NW top contact cells were found to possess enhanced conversion efficie...
Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts
Mehmood, Haris; Nasser, Hisham; Tauqeer, Tauseef; Turan, Raşit (Elsevier BV, 2019-12-01)
Dopant-free carrier-selective transition metal oxide (TMO) contacts offer unique electrical properties pertaining to the rectification of doping-related issues in silicon (cSi) solar cell. In this paper, cSi heterojunction solar cell featuring TMOs of molybdenum oxide (MoOx) and titanium oxide (TiOx) as hole- and electron-selective contacts, respectively, has been realized using Silvaco TCAD. The photovoltaic performance has been evaluated based on the electron affinity of TiOx, its thickness, interfacial c...
Enhanced capacitive behaviour of graphene based electrochemical double layer capacitors by etheric substitution on ionic liquids
Siyahjani, Shirin; Oner, Saliha; Diker, Halide; GÜLTEKİN, BURAK; Varlikli, Canan (Elsevier BV, 2020-08-01)
In this study, we report the effect of etheric substituents in imidazolium and ammonium based ionic liquids (IL) on the performance of electrochemical double layer capacitors (EDLC) consisted of gel polymer electrolyte (GPE) and reduced graphene oxide (RGO) electrode. GPEs contain poly (vinylidene fluoride-hexafluompropylene) (PVDF-HFP) and the ILs. Ammonium and imidazolium based ionic liquids (ILs) differ by their length of etheric groups and etheric group contents, respectively. According to the cyclic vo...
Investigation of as-quenched and tempered commercial steels by Magnetic Barkhausen Noise method
Gür, Cemil Hakan; Çam, İbrahim (Inderscience Publishers, 2006-01-01)
This study aims to characterise as-quenched and tempered steels by the Magnetic Barkhausen Noise method, and to contribute to optimisation of heat treatment processes. Identical austenitisation and quenching procedures were applied to SAE 1040 and SAE 4140 specimens to eliminate the effect of grain size. Samples were tempered at 200°C and 600°C for 2 hours. Microstructures were characterised by metallographic examinations and hardness measurements. Amplitude, position and frequency spectrum of signals were ...
Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting
Boghossian, Ardemis A.; Sen, Fatih; Gibbons, Brenna M.; Sen, Selda; Faltermeier, Sean M.; Giraldo, Juan Pablo; Zhang, Cathy T.; Zhang, Jingqing; Heller, Daniel A.; Strano, Michael S. (Wiley, 2013-07-01)
The chloroplast contains densely stacked arrays of light-harvesting proteins that harness solar energy with theoretical maximum glucose conversion efficiencies approaching 12%. Few studies have explored isolated chloroplasts as a renewable, abundant, and low cost source for solar energy harvesting. One impediment is that photoactive proteins within the chloroplast become photodamaged due to reactive oxygen species (ROS) generation. In vivo, chloroplasts reduce photodegradation by applying a self-repair cycl...
Citation Formats
N. D. Sankir, E. Aydin, H. Unver, E. Uluer, and M. Parlak, “Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells,” SOLAR ENERGY, pp. 21–29, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40421.