Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells
Date
2013-09-01
Author
Sankir, Nurdan D.
Aydin, Erkan
Unver, Hulya
Uluer, Ezgi
Parlak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
In this study, highly (1 1 2) oriented crystalline copper indium disulfide (CuInS2) thin films with high mobility have been deposited via ultrasonic spray pyrolysis. Structural and electrical properties of CuInS2 thin films were examined to utilize them in solar cell applications. Various amounts of precursor solution ranging from 0.25 to 2.02 ml/cm(2) were used to form CuInS2 thin films onto the soda lime glass substrates. Scanning electron microscopy (SEM) analysis revealed that all sprayed films were pin-hole and crack free. Atomic percent ratios of the Cu/In and S/In were very close to the targeted stoichiometric ratios of 1/1 and 2/1, respectively. X-ray diffraction (XRD) studies revealed that all the deposited films were polycrystalline and exhibiting the chalcopyrite structure. Optical band gap energy of the films were calculated as 2.85 eV and decreased to 1.40 eV by increasing the solution loading. Hopping mechanism could be considered as the dominant conduction mechanism in the studied temperature range. Carrier concentrations in CuInS2 films were ranging between 10(15) and 10(17) cm(-3). Mobility and the carrier concentration of the CuInS2 thin films deposited from 1.52 ml/cm(2) solution loading were 40.1 cm(2)/V s and 1.69 x 10(17), respectively. At last but not least, the amount of solution used in this study to form CuInS2 thin films was one of the lowest values reported in the literature.
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
General Materials Science
URI
https://hdl.handle.net/11511/40421
Journal
SOLAR ENERGY
DOI
https://doi.org/10.1016/j.solener.2013.05.024
Collections
Department of Physics, Article