The Augustin Capacity and Center

For any channel, the existence of a unique Augustin mean is established for any positive order and probability mass function on the input set. The Augustin mean is shown to be the unique fixed point of an operator defined in terms of the order and the input distribution. The Augustin information is shown to be continuously differentiable in the order. For any channel and convex constraint set with finite Augustin capacity, the existence of a unique Augustin center and the associated van Erven-Harremoes bound are established. The Augustin-Legendre (A-L) information, capacity, center, and radius are introduced, and the latter three are proved to be equal to the corresponding Renyi-Gallager quantities. The equality of the A-L capacity to the A-L radius for arbitrary channels and the existence of a unique A-L center for channels with finite A-L capacity are established. For all interior points of the feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed in terms of the A-L capacity and center. Certain shift-invariant families of probabilities and certain Gaussian channels are analyzed as examples.


The Sphere Packing Bound for Memoryless Channels
Nakiboğlu, Barış (Pleiades Publishing Ltd, 2020-07-01)
Sphere packing bounds (SPBs)-with prefactors that are polynomial in the block length-are derived for codes on two families of memoryless channels using Augustin's method: (possibly nonstationary) memoryless channels with (possibly multiple) additive cost constraints and stationary memoryless channels with convex constraints on the composition (i.e., empirical distribution, type) of the input codewords. A variant of Gallager's bound is derived in order to show that these sphere packing bounds are tight in te...
The Renyi Capacity and Center
Nakiboğlu, Barış (Institute of Electrical and Electronics Engineers (IEEE), 2019-02-01)
Renyi's information measures-the Renyi information, mean, capacity, radius, and center-are analyzed relying on the elementary properties of the Renyi divergence and the power means. The van Erven-Harremoes conjecture is proved for any positive order and for any set of probability measures on a given measurable space and a generalization of it is established for the constrained variant of the problem. The finiteness of the order alpha Renyi capacity is shown to imply the continuity of the Renyi capacity on (...
An improvement on the bounds of Weil exponential sums over Gallois rings with some applications
Ling, S; Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2004-10-01)
We present an upper bound for Weil-type exponential sums over Galois rings of characteristic p(2) which improves on the analog of the Weil-Carlitz-Uchiyama bound for Galois rings obtained by Kumar, Helleseth, and Calderbank. A more refined bound, expressed in terms of genera of function fields, and an analog of McEliece's theorem on the divisibility of the homogeneous weights of codewords in trace codes over Z(p)2, are also derived. These results lead to an improvement on the estimation of the minimum dista...
Time-constrained temporal logic control of multi-affine systems
Aydın Göl, Ebru (Elsevier BV, 2013-11-01)
In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multi-affine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on estimating the time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition syste...
Constructing linear unequal error protection codes from algebraic curves
Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2003-06-01)
We show that the concept of "generalized algebraic geometry codes" which was recently introduced by Xing, Niederreiter, and Lam gives a natural framework for constructing linear unequal error protection codes.
Citation Formats
B. Nakiboğlu, “The Augustin Capacity and Center,” PROBLEMS OF INFORMATION TRANSMISSION, pp. 299–342, 2019, Accessed: 00, 2020. [Online]. Available: