Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity
Date
2008-08-15
Author
John, Volker
Kaya Merdan, Songül
Kindl, Adele
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
The paper presents a finite element error analysis for a projection-based variational multiscale (VMS) method for the incompressible Navier-Stokes equations. In the VMS method, the influence of the unresolved scales onto the resolved small scales is modeled by a Smagorinsky-type turbulent viscosity.
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/48967
Journal
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
DOI
https://doi.org/10.1016/j.jmaa.2008.03.015
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Finite element error analysis of a variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Springer Science and Business Media LLC, 2008-01-01)
The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier-Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras
Ernel'yanov, EY; Wolff, MPH (Elsevier BV, 2006-02-15)
We develop a new approach for investigation of asymptotic behavior of Markov semigroup on preduals of von Neumann algebras. With using of our technique we establish several results about mean ergodicity, statistical stability, and constrictiviness of Markov semigroups. (c) 2005 Elsevier Inc. All rights reserved.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Sturmian comparison theory for linear and half-linear impulsive differential equations
Ozbekler, A.; Zafer, Ağacık (Elsevier BV, 2005-11-30)
In this paper, we investigate Sturmian comparison theory for second-order half-linear differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly change the behavior of solutions in comparison. Several oscillation criteria are also derived to illustrate the results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. John, S. Kaya Merdan, and A. Kindl, “Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity,”
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, pp. 627–641, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48967.