Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity

2008-08-15
John, Volker
Kaya Merdan, Songül
Kindl, Adele
The paper presents a finite element error analysis for a projection-based variational multiscale (VMS) method for the incompressible Navier-Stokes equations. In the VMS method, the influence of the unresolved scales onto the resolved small scales is modeled by a Smagorinsky-type turbulent viscosity.
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Suggestions

Finite element error analysis of a variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Springer Science and Business Media LLC, 2008-01-01)
The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier-Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras
Ernel'yanov, EY; Wolff, MPH (Elsevier BV, 2006-02-15)
We develop a new approach for investigation of asymptotic behavior of Markov semigroup on preduals of von Neumann algebras. With using of our technique we establish several results about mean ergodicity, statistical stability, and constrictiviness of Markov semigroups. (c) 2005 Elsevier Inc. All rights reserved.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Sturmian comparison theory for linear and half-linear impulsive differential equations
Ozbekler, A.; Zafer, Ağacık (Elsevier BV, 2005-11-30)
In this paper, we investigate Sturmian comparison theory for second-order half-linear differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly change the behavior of solutions in comparison. Several oscillation criteria are also derived to illustrate the results.
Citation Formats
V. John, S. Kaya Merdan, and A. Kindl, “Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity,” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, pp. 627–641, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48967.