Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces

Barinov, Alexei
Toffoli, Hande
Fabris, Stefano
Gregoratti, Luca
Aballe, Lucia
Dudin, Pavel
Baroni, Stefano
Kiskinova, Maya
The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximate to 700 K), the complex C 1s and In 3d(5/2) spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacancies.


Progressive structural and electronic properties of nano-structured carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (AIP Publishing, 2013-05-21)
Ab initio calculations, based on the planewave pseudopotential method and the density functional theory, have been reported on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated thin armchair graphene nanoribbons (N-a-AGNR) of dimer line numbers N-a = 4 and 5. We have considered chains of several lengths (n = 4-9 atoms) and with different forms of attachment with the AGNRs. It is found that odd-numbered chains are metallic in nature, with ...
Progressive changes in surface structure and electronic properties on Si(001) surface by CaF2 adsorption
Alzahrani, A. Z.; Usanmaz, D. (AIP Publishing, 2011-06-15)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic geometry and electronic structures of calcium fluoride (CaF2) on the Si(001) surface. We have considered the experimentally observed (2 x 1) and (3 x 1) reconstructions with different bonding configurations of the CaF2 molecule on the Si(001) surface. Our total energy calculations suggest that the (3 x 1) structure is slightly more preferable than the (2 x 1). The key structural par...
Singularities of spectra of infrared reflection of tertiary compounds of the type T1BX2
Hasanlı, Nızamı; Khomutova, M.D.; Sardarly, R.M.; Tagorov, V.I. (Springer Science and Business Media LLC, 1977-07-01)
The frequencies of lattice vibrations are calculated for compounds of the type T1BX2 on the basis of the linear-chain model. The calculated frequencies are compared with experimental values for TlGaS2 and TlGaSe2. The good agreement between the calculated and experimental frequencies serves as proof of the applicability of the linear-chain model to compounds of the T1BX2 type. The proposed method of calculation of frequencies makes it possible to predict the theoretical frequencies of lattice vibrations of ...
Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential
Ikot, A. N.; Okorie, U. S.; Sever, Ramazan; Rampho, G. J. (Springer Science and Business Media LLC, 2019-08-12)
Within the framework of non-relativistic quantum mechanics via the Nikiforov-Uvarov (NU) method, we obtained the energy eigenvalues and the corresponding normalized eigenfunctions of a newly proposed screened Kratzer potential for lithium hydride (LiH) and hydrogen chloride (HCl) diatomic molecules. With the help of the Hellman-Feynman theorem, the expressions for the expectation values of the square of inverse of position, r(-2), inverse of position, r(-1), kinetic energy, T, and square of momentum, p(2), ...
BILIKMEN, S; OMAR, A (Springer Science and Business Media LLC, 1994-05-01)
The Hamiltonian for an electron travelling through a large-amplitude backward electromagnetic wave, an axial guide magnetic field and radiation field is formulated. Poincare surface-of-section plots show that this Hamiltonian is non-integrable, and leads to chaotic trajectories. Equilibrium conditions are derived in the limit where the radiation field approaches zero. Compared to conventional FEL, the total energy of the system at pondermotive resonance E(c) is large, while the electron's critical energy...
Citation Formats
A. Barinov et al., “Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces,” PHYSICAL REVIEW LETTERS, pp. 0–0, 2007, Accessed: 00, 2020. [Online]. Available: