CHAOTIC ELECTRON TRAJECTORIES IN ELECTROMAGNETIC WIGGLER FREE-ELECTRON LASER WITH A GUIDE MAGNETIC-FIELD

1994-05-01
BILIKMEN, S
OMAR, A
The Hamiltonian for an electron travelling through a large-amplitude backward electromagnetic wave, an axial guide magnetic field and radiation field is formulated. Poincare surface-of-section plots show that this Hamiltonian is non-integrable, and leads to chaotic trajectories. Equilibrium conditions are derived in the limit where the radiation field approaches zero. Compared to conventional FEL, the total energy of the system at pondermotive resonance E(c) is large, while the electron's critical energy gamma(c) is low for electromagnetic wiggler FEL. Moreover, the threshold wave amplitude (A(r) = A(c)) of beam chaoticity is found at lower values of the radiation field amplitude compared to magnetostatic wiggler FEL. Previous features confirmed that electromagnetic wiggler FEL can operate more coherently and more efficiently at moderated particle's energy compared to magnetostatic wiggler FEL.
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS

Suggestions

Hermitian and gauge-covariant Hamiltonians for a particle in a magnetic field on cylindrical and spherical surfaces
Shikakhwa, M. S.; Chair, N. (IOP Publishing, 2017-01-01)
We construct the Hermitian Schrodinger Hamiltonian of spin-less particles and the gauge-covariant Pauli Hamiltonian of spin one-half particles in a magnetic field, which are confined to cylindrical and spherical surfaces. The approach does not require the use of involved differential-geometrical methods and is intuitive and physical, relying on the general requirements of Hermicity and gauge-covariance. The surfaces are embedded in the full three-dimensional space and confinement to the surfaces is achieved...
Singular potentials and moving boundaries in 3D
Yuce, C (Elsevier BV, 2004-02-16)
In this Letter, the problem of a spinless particle under the time-dependent harmonic oscillator potential and a singular potential with a moving boundary is studied in the spherical coordinates. Some transformations are used to transform the moving boundary conditions to the fixed boundary conditions. An exact solution is constructed.
Nonlinear mode coupling and sheared flow in a rotating plasma
Uzun Kaymak, İlker Ümit; Choi, S.; Clary, M. R.; Ellis, R. F.; Hassam, A. B.; Teodorescu, C. (IOP Publishing, 2009-01-01)
Shear flow is expected to stabilize the broad spectrum of interchange modes in rotating plasmas. However, residual fluctuations may still persist. To investigate the presence of such fluctuations, sixteen magnetic pickup coils equally spaced on a crown have been mounted inside the vacuum vessel, at the edge of a rotating plasma in mirror configuration. A comprehensive analysis of the magnetic fluctuations shows that very low spatial mode numbers survive under the imposed shear flow. Nevertheless, temporal F...
Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
Eshghi, M.; Sever, Ramazan; Ikhdair, S. M. (IOP Publishing, 2018-02-01)
We need to solve a suitable exponential form of the position-dependent mass (PDM) Schrodinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.
Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces
Barinov, Alexei; Toffoli, Hande; Fabris, Stefano; Gregoratti, Luca; Aballe, Lucia; Dudin, Pavel; Baroni, Stefano; Kiskinova, Maya (American Physical Society (APS), 2007-07-01)
The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximate to 700 K), the complex C 1s and In 3d(5/2) spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacan...
Citation Formats
S. BILIKMEN and A. OMAR, “CHAOTIC ELECTRON TRAJECTORIES IN ELECTROMAGNETIC WIGGLER FREE-ELECTRON LASER WITH A GUIDE MAGNETIC-FIELD,” NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, pp. 463–480, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64714.